From Scientific Discovery to Program Development and Optimization

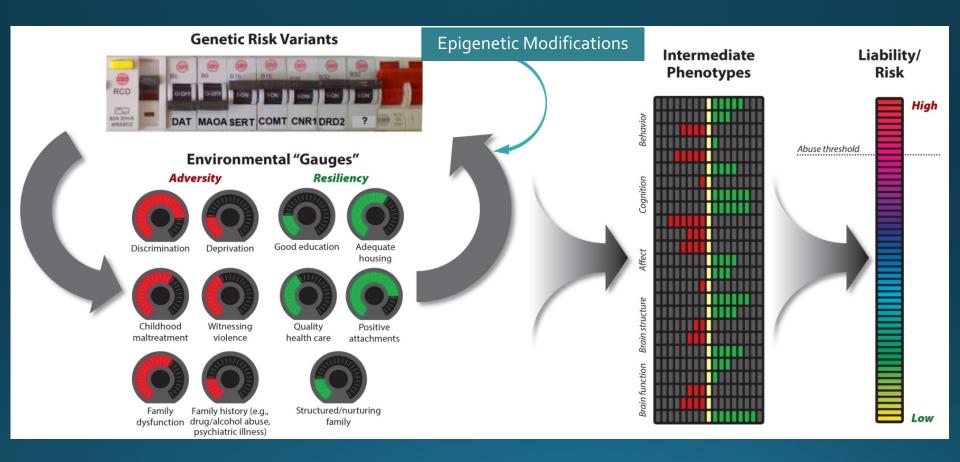
Dr. Diana Fishbein

Director, Bennett Pierce Prevention Research Center Director, Program for Translational Research on Adversity and Neurodevelopment Director, National Prevention Science Coalition **The Pennsylvania State University**

Translational Sequencing

Fishbein et al. (2016). The full translational spectrum of prevention science: facilitating the transfer of knowledge to practices and policies that prevent behavioral health problems. Transl. Behav. Med. 6(1), 5-16

Translational Neuroscience: Prevention Research Objectives


Ultimate Question: What works best for <u>whom</u>, <u>why</u> and <u>under</u> <u>what circumstances?</u>

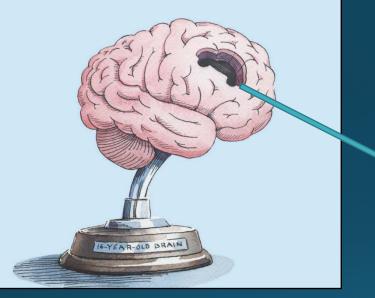
- Apply an <u>etiological understanding</u> of risk behavior to intervention research models.
- Elucidate characteristics of *favorable responders* to standard interventions.
- Elucidate characteristics of <u>heterogeneous subgroups that are</u> <u>unresponsive.</u>
- Identify underlying *malleable* mechanisms that explain intervention outcomes: can/do interventions alter these processes?
- Target specific (and *novel*?) intervention components to welldefined needs of subtypes = <u>precision-based</u>

Factors in the Translational Prevention Model

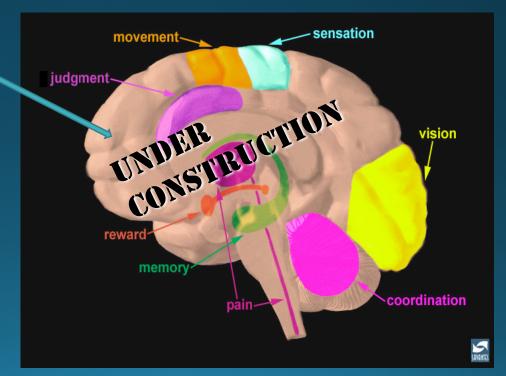
C	Stress/Adversity Family Functioning Neighborhood Conditions cumulative Burden/Allostatic Load Community Relations	I, Social, and Economi Resiliency Conditions Culture/Norms Economy Nutrition Social Supports	Health Care Accessibility and Quality Environmental Exposure Teratogenic factors Brain Insult
Gene Expression - Epigenetics Ind Genetic and Congenital Influences	Be	ehavioral Phenotype Disinhibition Emotional Dysregulation Aggression Impulsivity Mood Disorders ADHD and CD Resiliency Traits	Education, Practice, and Policy Public Health Health Care Social and Family Services Social Systems Communication Dissemination Program Support and Infrastructure Human Resource Capital Economic Systems
	Integrity of Brain F and Connectiv Cognition Emotional Stre Regulation HPA Axis Regul Developmental Pro Biomarkers	unction Ir vity School, Commu ess O ation ocesses	mplementation & Evaluation unity, Outpatient, Inpatient Settings utcome Assessment Pharmaceuticals Behavioral Health Military Health Medical Care

Accumulative Model of Liability for Risk Behaviors

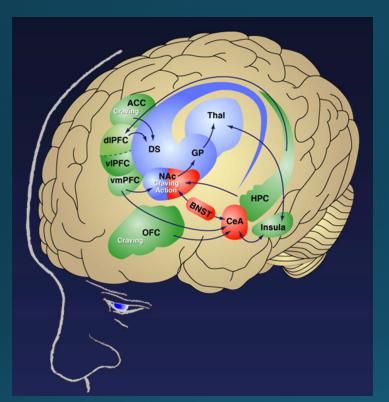
Etiological Considerations in Prevention Protocols

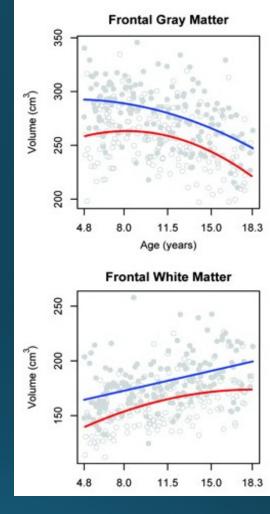

- Relevant etiological factors:
 - Psychopathology, adversity/stress, neurogenetic mechanisms, parenting/family, neighborhood, contagion, etc.
- Antecede and potentially confound SA pathways
- Externalizing behaviors in particular exacerbate poor outcomes
- These factors may interfere with intervention outcomes if not directly addressed
- Varying initial level of severity/risk and type may differentially predict intervention outcomes
- Targeted intervention can enhance neural growth and development, thereby having an enduring impact on the trajectory of SA.
- Early intervention:
 - Brain is most plastic and susceptible to lasting changes, before complicating factors emerge

Adolescence: The Ultimate Risk Factor!



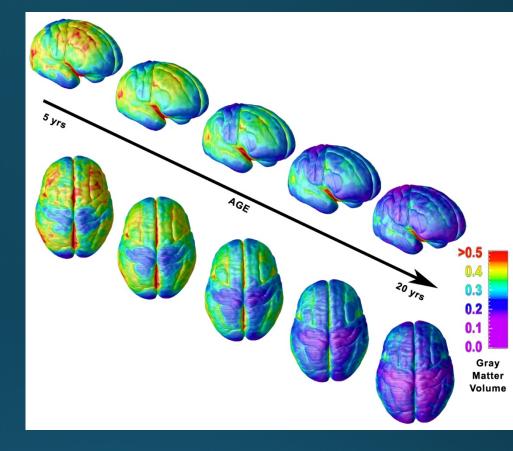
Why do most 16-year-olds drive like they're missing a part of their brain?


BECAUSE THEY ARE.



And this is *normative*!

Frontal Lobe Changes During Adolescence

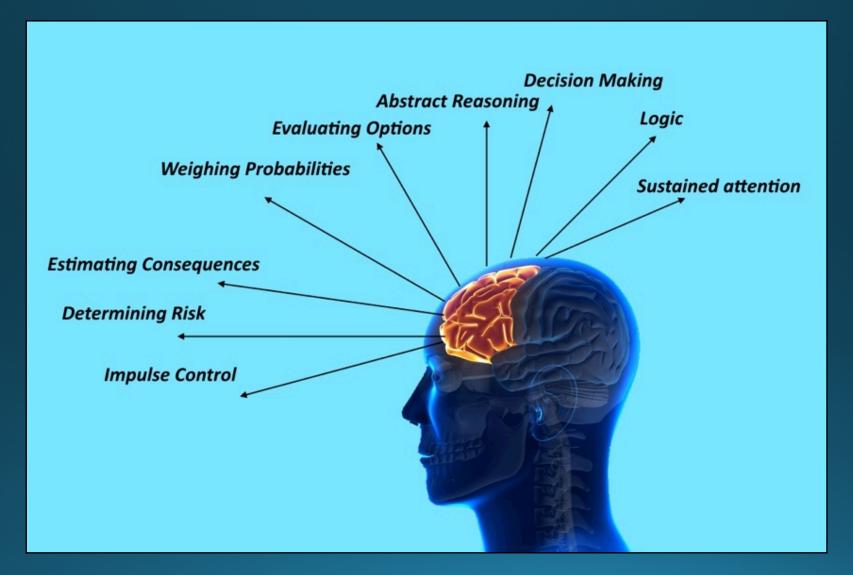

- Planning, decision-making, impulse control, memory, language, processing social cues
- Gray matter goes down, white matter goes up, overall size stays about the same

From: Ball W et al with the Brain Development Cooperative Group (2012). Total and regional brain volumes in a population-based normative sample from 4 to 18 years: the NIH MRI Study of Normal Brain Development. *Cerebral Cortex*, 22(1):1-12.

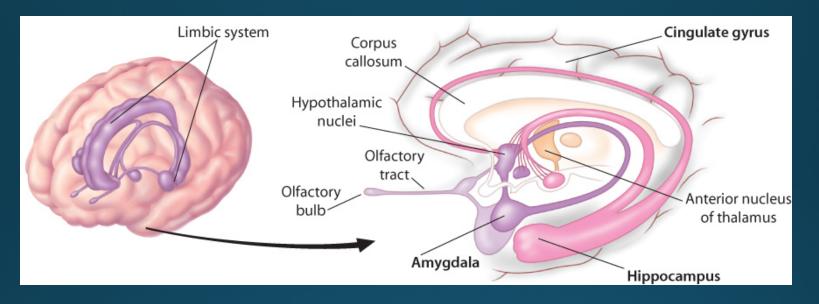
Frontal Cortex is Last to Develop

• Continued myelination of cortical regions

coating nerve fibers for faster communication through the teen years and early twenties



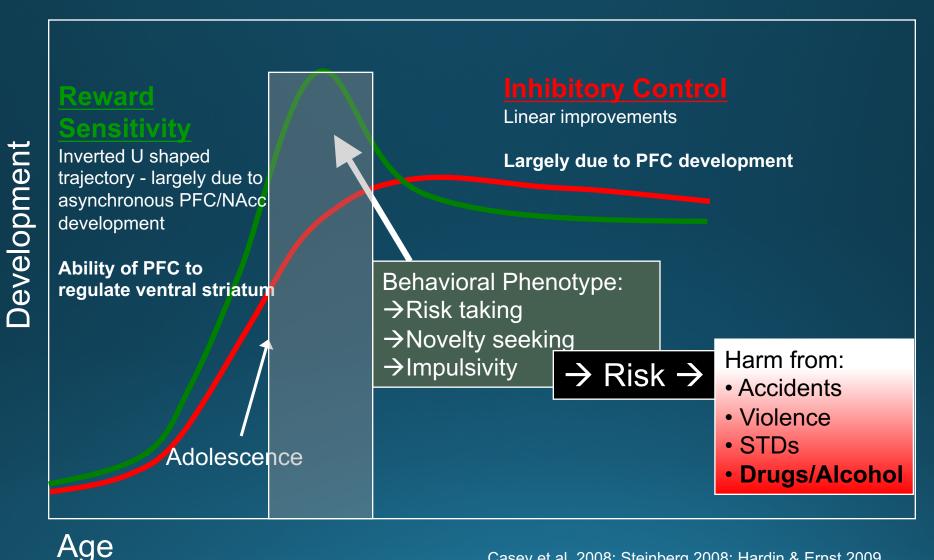
Pruning of excess connections established earlier in development


thinning of "grey matter"

• New connections established enhanced integration *between* brain areas

Focal Point: Executive Functioning

Prefrontal Executive Deficits Undermine Regulatory Circuitry

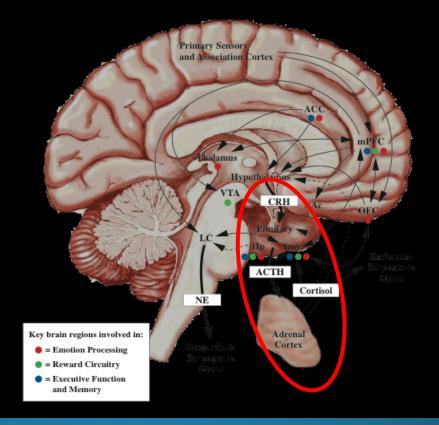


➢ Inattention

- Impulsivity and novelty seeking
- Inability to accurately interpret social cues

- Permits negative emotions to dominate
- Maladaptive stress responses
- Inattention to punishment
- Heightened sensitivity to rewards; e.g., drugs and risk taking

Dual Process Model of Adolescent Development


Casey et al. 2008; Steinberg 2008; Hardin & Ernst 2009.

Chronic stress primes the brain for novelty seeking and drug use

- Brain initiates orchestrated response to stress
- Chronicity and severity can measurably alter brain development and function
 - ✓ Executive functioning
 - ✓ Emotion regulation
 - ✓ Reward processing
- Disengages coping mechanisms and compromises ability to execute rational choices
- Same brain regions implicated in stress-related psychopathology
- Genetic vulnerabilities affect behavioral outcomes

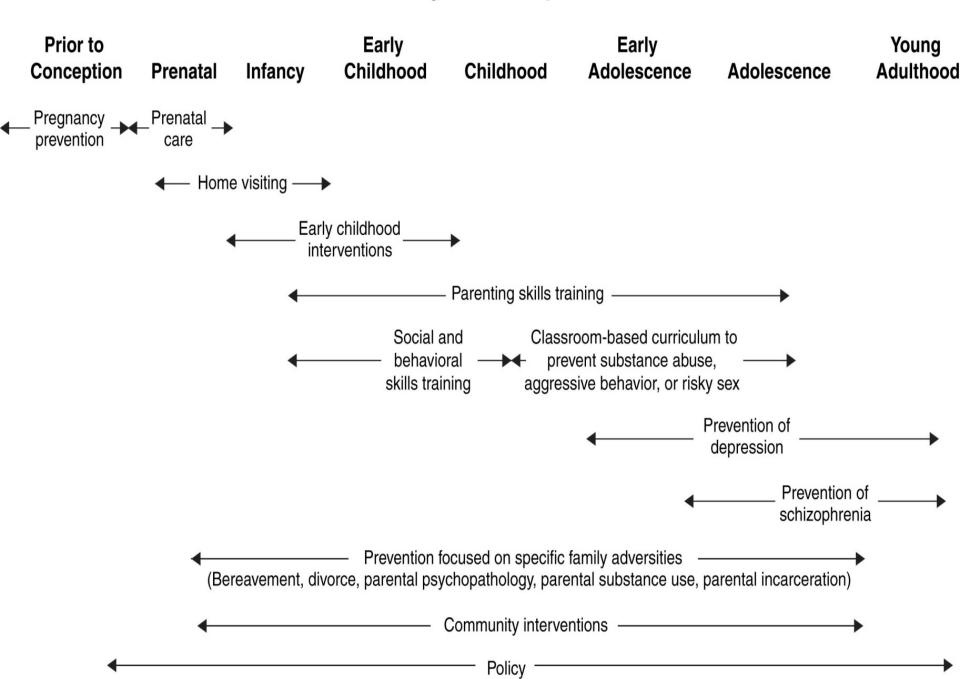
(Weder & Kaufman, 2010)

Figure 1: Brain Regions Involved in the Stress Response

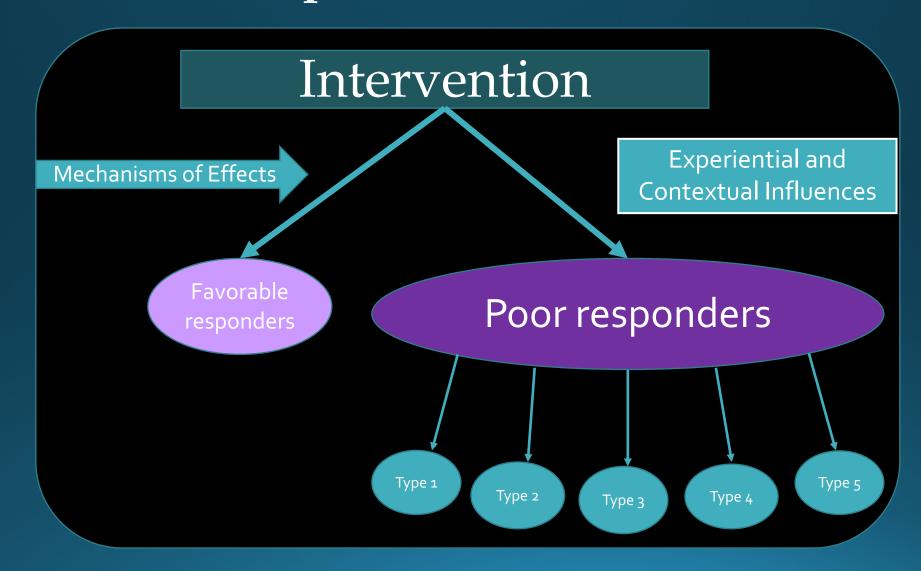
Potentialities via Epigenetics

Epigenetic modifications are at the very core of G X E interactions

- Not DNA mutations, but via modification of methylation state of DNA
 - turns genes on and off
- ➢ For worse (e.g., stress, obesity, depression) or...
- For better: <u>Huge prevention and public health implications</u>!


Transgenerational Epigenetic Transmission!

- *Experiences* and *exposures* in one generation transmit to subsequent generations
 - Even prior to conception
 - Potential to affect at least 2 subsequent generations


Exploiting Brain Plasticity for Preventive Purposes

- Experience changes neural patterns, for better or for worse.
- Creates unique opportunities for emotionalmotivational learning
 - Sculpts connections between cognitive control and emotional systems to create lasting changes
- Relevance to prevention, early intervention and policy
 - Scaffolding and social supports

Interventions by Developmental Phase

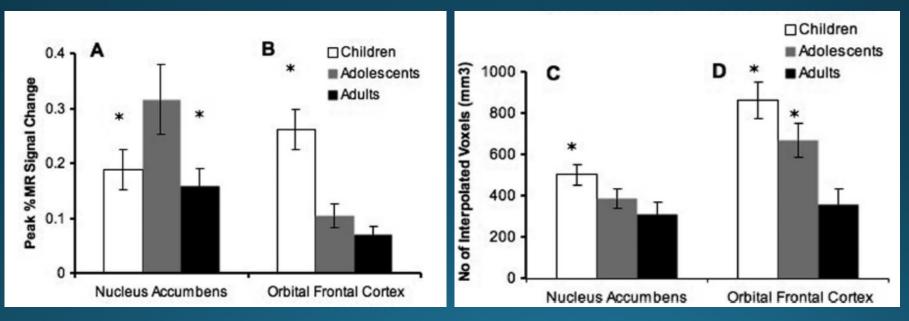
Need in Prevention Science to Improve Effect Sizes

Mechanisms of Behavioral Change in Response to Preventive Intervention

Citation	Intervention	Population Findings		
Fishbein et al. (in prep)	PATHS	K and 1 st graders	Moderation by neurocognitive and stress physiological indicators	
Piehler, et al. (2014)	Early Risers Program	Formerly homeless youth (ages 6 - 12) and familiesProgram promoted growth in executive function which reduced conduct problems		
Bierman, et al. (2008)	Head Start REDI	Kindergarten ChildrenProgram promoted gains in executive function, which partially mediated school readiness		
Fisher et al. (2007)	Family-based therapy	3 – 6 year old foster children	Intervention normalized cortisol levels, which improved HPA axis functioning	
Riggs et al. (2006)	PATHS	2 nd and 3 rd grade children	Inhibitory control and verbal fluency mediated internalizing and externalizing behavior problems	
Carré et al. (2014)	Fast Track Program	Adult malesReduced testosterone reactivity and aggressocial provocations, and reduced testosteroreactivity mediated aggressive behavior		
Beauchaine et al. (2015)	Incredible Years Intervention	4 – 6 year old children with ADHD	EDA appears to mark resistance to treatment	
Brotman et al. (2007)	Family-based intervention	Preschool age siblings of adjudicated youth	Intervention alters stress response in anticipation of a peer social challenge	
FRAMEWORK REVIEWS				

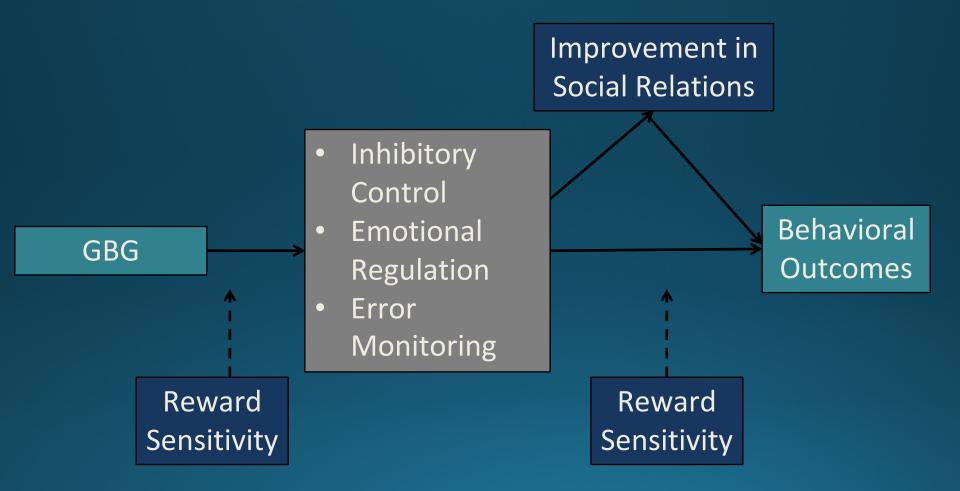
FRAMEWORK REVIEWS

Berkman, E. T., Graham, A. M., & Fisher, P. A. (2012). Training self-control: a domain-general translational neuroscience approach. Child development perspectives, 6(4), 374-384.

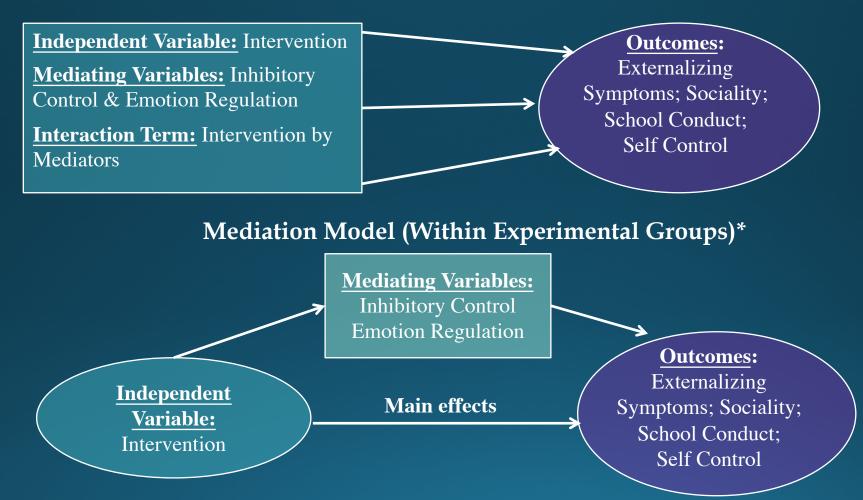

Blair, C., & Diamond, A. (2008). Biological processes in prevention and intervention: The promotion of self-regulation as a means of preventing school failure. Development and psychopathology, 20(03), 899-911.

Wetherill, R., & Tapert, S. F. (2013). Adolescent brain development, substance use, and psychotherapeutic change. Psychology of Addictive Behaviors, 27(2), 393.

Sub-cortical over-reactivity to reward


Magnitude and extent of limbic system (nucleus accumbens) and frontal cortex activity to reward.

Adolescents (13–17 years) showed greater percent signal change to large rewards than either children (aged 7–11 years) or adults (23–29 years) in subcortical limbic regions.

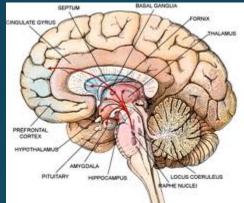

Galvan, A. et al. (2006). Earlier development of the accumbens relative to orbitofrontal cortex might underlie risk-taking behavior in adolescents. J Neurosci 26 (25), 6885–6892.

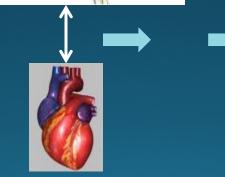
Neurobiological Model of GBG Effects

Neurodevelopmental Moderators and Mediators in Intervention Outcomes

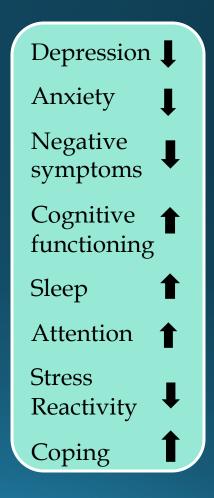
Moderation Model (Between Experimental and Control Groups)

*Change in mediators will be greater in intervention participants than the control children who experience change due only to maturation.


Brain-Based Mindfulness Studies

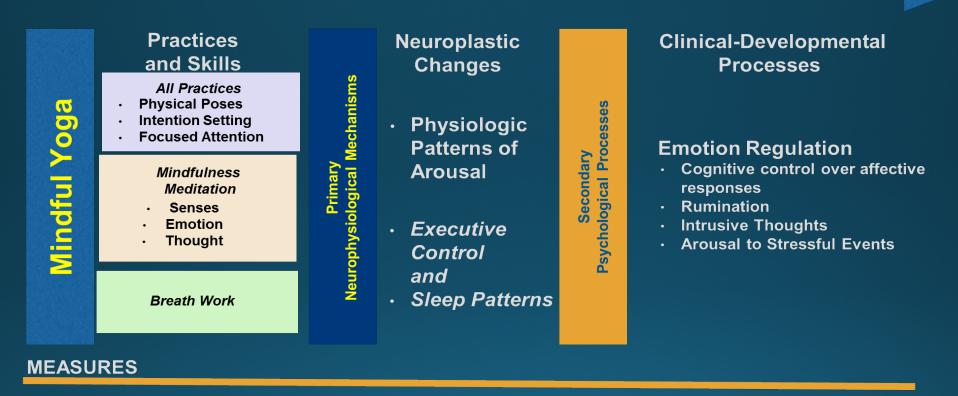

Citation	Intervention Type	Population	Findings
Davidson et al. (2003).	Mindfulness- Based Stress	Adult	Positive affect
	Reduction (MBSR)		MBSR vs. controls - A antibody titers week 4 vs. week 8
Tang et al. (2009).	Integrative Body–Mind	Undergraduates	HR and SCR, A respiratory amplitude, an& Chest respiratory rate.
	Training (IBMT)		ArCBF right subgenual ACC & adjacent ventral ACC
	vs. Relaxation		\succ \blacklozenge activity putamen & caudate $ ightarrow$ ECF and reward systems
	Training (RT)		theta power in frontal midline electrodes.
Luders et al. (2009).	Meditation (various)	Adults	GM volume: OFF, hippocampus, thalamus & inferior temporal gyrus
Tang et al. (2012).	IBMT	Undergraduates	 ▶ I radial and axial diffusivity ▶ I FA
Jung et al. (2012).	"Brain Wave Vibration" mind–	Adults	Stress level varied according to BDNF (Val/Met &Met/Met vs. Val/Val)
	body training		Tx by COMT Val158Met interaction for plasma NE concentrations
Tang et al. (2010).	IBMT vs. RT	Undergraduates	FA : anterior corona radiate, the body and genu of the corpus callosum, superior corona radiata, and superior longitudinal fasciculus.
Kerr et al. (2011).	MBSR	Adults	A alpha power modulation in response to cue
			fin 7–14 Hz alpha modulation in the 600–800ms postcue period o vs. 8 weeks
			Alpha modulation in an alpha sub-band
Oberle et al. (2011).	Mindfulness and Inhibition Control	4 th and 5 th grade	➤ ★self-reported mindfulness → ★inhibitory control
Holzel et al. (2011).	MBSR	Adults	AGM volume hippocampus, posterior cingulate cortex, temporoparietal junction and cerebellum.
Kilpatrick et al. (2011).	MBSR	Adults (women)	 f connectivity w/in auditory & visual networks, and b/t auditory cortex & areas assoc w/ attentional & self-referential processes f anticorrelation b/t auditory and visual cortex, and b/t visual
			cortex and areas assoc w/ attentional and self-referential

Potential Effects of Mindful Interventions on Regulatory Systems



Neurotransmitter and HPA axis homeostasis

Increased vagal flow (physiologic substrate of attention and emotion regulation)


Putative Neurobiological Mechanisms of Action

Mechanism of Action Involved	Proposed Process	Hypothesized Brain Areas
Increased present-moment awareness	Bottom-up processing of salient stimuli with or without top-down modulation of reactivity	Dorsolateral PFC, anterior cingulate cortex, ventral striatum, insula, amygdala
Improved attentional control	<i>Top-down</i> modulation of attention	PFC, anterior cingulate cortex
Greater self-regulation	<i>Top-down</i> improved inhibitory control	Medial PFC, orbitofrontal cortex, anterior cingulate cortex
Increased self-awareness	<i>Bottom-up</i> processing of salient stimuli	Anterior cingulate cortex, insula
Develop and implement new way to approach discomfort	<i>Top-down</i> modulation of responses to discomfort and decision making	Ventromedial PFC, dorsal striatum, amygdala
Reduced reactivity to stress or substance cues	Bottom-up reactivity	Anterior cingulate cortex, ventral striatum

Adapted from Witkiewitz, Lustyk, and Bowen, 2012

Optimization

Conceptual Model

Implementation Data Analysis of Practices HRV (Acute Stress & Nocturnal) Vigilance Task MAAS-A Actigraphy Sleep Diary Emotion Regulation Questionnaire DARE ESM Daily Diaries Student Surveys Teacher Surveys

A previous study found that the HLF Mindful Yoga program improved rumination, intrusive thoughts, and emotional arousal to stressful events in 9-11 year old Baltimore City youth (Mendelson, Greenberg, Dariotis, et al., 2010).

Strengthening Vertical Control

- Top-down (PFC) control over limbic impulses to enhance self-regulation and stress management skills.
 - Poor vertical control linked with impulsivity, sensation-seeking, emotion dysregulation, and externalizing behaviors (e.g., drug abuse)
- Mindful programs capitalize on brain's plasticity in the neural circuitry of emotions.
 - Influences brain circuits and physiology implicated in disorders such as anxiety, PTSD, depression.
- Effects of mindful-enhanced vertical control through practicing strategies in...
 - Awareness and attention to regulation of cognitions, emotions, and somatic sensations

Translational Sequencing

Fishbein et al. (2016). The full translational spectrum of prevention science: facilitating the transfer of knowledge to practices and policies that prevent behavioral health problems. Transl. Behav. Med. 6(1), 5-16

Policy Goals

- Facilitate transfer of knowledge to inform and reform policy
- Institutionalize EBPs
- Prevention "mentality"
- National resource: clearinghouse
- Training of early career investigators
- Relationship building b/t scientists, practitioners and decision-makers

National Prevention Science Coalition to Improve Lives

- Comprised of prominent scientists (across disciplines), educators, community stakeholders, practitioners and clinicians, policy makers, advocates, and foundation representatives.
- As a collective body, we offer the public and policy-makers with expertise and capabilities in multiple arenas.
- Several federal agency administrators (e.g., NIH, SAMHSA, ONDCP, CDC, OJJDP) act as advisors.
- Collaborations with like-minded national and community organizations.

NPSC Mission

To prevent social ills and promote wellbeing by translating scientific knowledge into effective and sustainable practices, systems and policies.

NPSC Goals

Achieving Socially Significant Outcomes:

- <u>Translational Science</u>: To encourage interdisciplinary teams of scientists to apply integrative models to understand
 - conditions that lead to poor mental, behavioral and physical health and
 - factors that underlie intervention effects.
- Implementation and Systems Change:
 - To advance science-driven practices to reducing risks and disadvantages.
 - To encourage system-wide capacity to effectively implement evidence-based strategies and achieve socially significant outcomes.
- <u>Advocacy/Policy</u>: To promote governmental adoption of a "prevention model" to reduce expenditures and benefit society.

Acknowledgements

National Institute on Alcohol Abuse and Alcoholism

NIH

National Institute on Drug Abuse The Science of Drug Abuse & Addiction

