Moving Beyond the Average Treatment Effect: A Look at Power Analyses for Moderator Effects in Cluster Randomized Trials

Jessaca Spybrook Western Michigan University December 3, 2015 (Joint work with Ben Kelcey, University of Cincinnati, Nianbo Dong, University of Missouri)

*This work was funded by a grant (DGE-1437692) from the National Science Foundation.

Overview

- Background
- Purpose
- 2-level CRT
- 3-level CRT
- Implications

Background

• What works?

Background

• What works?

•Under what conditions?

Background

• What works?

•Under what conditions?

For whom?

Purpose

• What works?

Under what conditions?

For whom?

Purpose

Designs 2-level cluster randomized trial (2-level CRT)

□ 3-level cluster randomized trial (3-level CRT)

Suppose a team of researchers are planning an impact study to determine the effectiveness of a new 5th grade science curriculum. They are planning a 2-level CRT with students nested within schools and schools are randomly assigned to the new curriculum or the current curriculum.

What works?

What is the effect of the new science curriculum relative to the current curriculum on science achievement for fifth graders?

Model

$$y_{ij} = \gamma_{00} + \gamma_{01}T_j + r_{0j} + e_{ij}$$

$$e_{ij} \sim N(0,\sigma^2)$$
$$r_{0j} \sim N(0,\tau)$$

Main effect of Treatment

Model

$$y_{ij} = \gamma_{00} + \gamma_{01}T_j + r_{0j} + e_{ij}$$

$$e_{ij} \sim N(0,\sigma^2)$$
$$r_{0j} \sim N(0,\tau)$$

Main effect of Treatment

Set
$$\rho = \frac{\tau}{\tau + \sigma^2}$$
 $\delta = \frac{\gamma_{01}}{\sqrt{\tau + \sigma^2}}$

Minimum detectable effect size (MDES) (Bloom, 1995)

$$MDES = M_{J-2} \sqrt{\frac{4(\rho + (1 - \rho)/n)}{J}}$$

 M_{J-2} is multiplier that approaches 2.8 as J increases, two-tail test with 0.05 level of significance

- J is total number of sites
- *n* is number of individuals per site
- ρ is the intraclass correlation

To increase precision

Common practice to include a cluster-level covariate

□ School-level pretest

Model:
$$y_{ij} = \gamma_{00} + \gamma_{01}T_j + \gamma_{02}W_j + r_{0j} + e_{ij}$$

Main effect of Treatment

Question	Effect of Interest	MDES
What works?	Main effect of treatment	$M_{J-2}\sqrt{\frac{4(\rho+(1-\rho)/n)}{J}}$
	Main effect of treatment w/ covariate	$M_{J-3}\sqrt{\frac{4((1-R_{ W}^{2})\rho + (1-\rho)/n)}{J}}$

What Works?

	Main Effect	
J=30		
n=10	0.39	
n=50	0.29	
n=100	0.27	
J=60		
n=10	0.27	
n=50	0.20	
n=100	0.19	

Assumptions: Two-tail significance =0.05, equal allocation of clusters, constant *n* per cluster, power = 0.80, $\rho = 0.23$, $R_{W}^{2} = 0.75$.

2-level CRT – under what conditions?

Under what conditions?

Is there a difference in the mean effects by school type (urban vs. suburban)?

2-level CRT – under what conditions?

■ Model:

 $y_{ij} = \gamma_{00} + \gamma_{01}T_j + \gamma_{02}S_j + \gamma_{03}T_jS_j + \gamma_{04}W_j + r_{0j} + e_{ij}$ **Cluster level**

moderator effect

Slide 17

Question	Effect of Interest	MDES MDESD
What works?	Main effect of treatment	$M_{J-2}\sqrt{\frac{4(\rho+(1-\rho)/n)}{J}}$
	Main effect of treatment w/ covariate	$M_{J-3}\sqrt{\frac{4((1-R_{ W}^{2})\rho + (1-\rho)/n)}{J}}$
Under what conditions?	Cluster-level moderator	$M_{J-5} \sqrt{\frac{16((1-R_{ SW}^2)\rho + (1-\rho)/n)}{J}}$

	What Works?	Under what conditions?	
	Main Effect	CL Mod	
J=30			
n=10	0.39	0.75	
n=50	0.29	0.53	
n=100	0.27	0.49	
J=60			
n=10	0.27	0.52	
n=50	0.20	0.37	
n=100	0.19	0.34	

Assumptions: Two-tail significance =0.05, equal allocation of clusters, constant *n* per cluster, power = 0.80, $\rho = 0.23, R_{|W|}^2 = 0.75, R_{|SW|}^2 = 0.80$.

2-level CRT – for whom?

For whom?

Is there a difference in the mean effect for boys and girls?

2-level CRT – for whom?

■ Model:

 $y_{ij} = \gamma_{00} + \gamma_{01}T_j + \gamma_{10}X_{ij} + \gamma_{11}T_jX_{ij} + r_{0j} + e_{ij}$ Individual level moderator effect

Question	Effect of Interest	MDES MDESD
What works?	Main effect of treatment	$M_{J-2}\sqrt{\frac{4(\rho+(1-\rho)/n)}{J}}$
	Main effect of treatment w/ covariate	$M_{J-3}\sqrt{\frac{4((1-R_{ W}^{2})\rho + (1-\rho)/n)}{J}}$
Under what conditions?	Cluster-level moderator	$M_{J-5} \sqrt{\frac{16((1-R_{ SW}^2)\rho + (1-\rho)/n)}{J}}$
For whom?	Individual-level moderator	$M_{n^*J-(J-2)} \sqrt{\frac{16((1-R_{ X}^2)(1-\rho)/n)}{J}}$

	What Works?	Under what conditions?	For whom?	
	Main Effect	CL Mod	Ind Mod	
J=30				
n=10	0.39	0.75	0.51	
n=50	0.29	0.53	0.23	
n=100	0.27	0.49	0.16	
J=60				
n=10	0.27	0.52	0.36	
n=50	0.20	0.37	0.16	
n=100	0.19	0.34	0.11	

Assumptions: Two-tail significance =0.05, equal allocation of clusters, constant *n* per cluster, power = 0.80, $\rho = 0.23$, $R_{|W}^2 = 0.75$, $R_{|SW}^2 = 0.80$, and $R_{|X}^2 = 0.20$.

Suppose a team of researchers are planning an impact study to determine the effectiveness of a school-wide science curriculum. They are planning a 3-level CRT with students nested within teachers nested within schools and schools are randomly assigned to the new curriculum or the current curriculum.

What works?

What is the effect of the new science curriculum relative to the current curriculum on science achievement for all students?

3-level CRT – under what conditions?

Under what conditions?

Is there a difference in the mean effects by school type (urban vs. suburban)?

Is there a difference in the mean effects by teacher experience level (0-3 years vs. more than 3 years)?

3-level CRT – for whom?

For whom?

Is there a difference in the mean effect for boys and girls?

Question Effect of Interest

What Main effect
$$M_{K-3}\sqrt{\frac{4\left[\left(1-R_{|W}^{2}\right)\rho_{L3}+\left[\rho_{L2}+\left(1-\rho_{L3}-\rho_{L2}\right)/n\right]/J\right]}{K}}$$

MDES

QuestionEffect of
InterestMDES
MDESDWhat
works?Main effect
of treatment $M_{K-3}\sqrt{\frac{4\left[\left(1-R_{|W}^{2}\right)\rho_{L3}+\left[\rho_{L2}+\left(1-\rho_{L3}-\rho_{L2}\right)/n\right]/J\right]}{K}}$ Under what
conditions?Cluster-level
moderator $M_{K-5}\sqrt{\frac{16\left[\left(1-R_{|SW}^{2}\right)\rho_{L3}+\left[\rho_{L2}+\left(1-\rho_{L3}-\rho_{L2}\right)/n\right]/J\right]}{K}}$

Question Effect of **MDES** Interest **MDESD** Main effect $M_{K-3} \sqrt{\frac{4\{(1-R_{|W}^2)\rho_{L3} + [\rho_{L2} + (1-\rho_{L3} - \rho_{L2})/n]/J\}}{K}}$ What works? Cluster-level moderator $M_{K-5} \sqrt{\frac{16\{(1-R_{|SW}^2)\rho_{L3} + [\rho_{L2} + (1-\rho_{L3} - \rho_{L2})/n]/J\}}{K}}$ Under what conditions? Under what Teacher-level $M_{u} \sqrt{\frac{16\left[\left(1-R_{|M|}^{2}\right)\rho_{L2}+\left(1-\rho_{L3}-\rho_{L2}\right)/n\right]/J}{\kappa}}$ conditions? moderator

Note:
$$u=J^{K}-(K-2), v=n^{J}K-(J^{K})-(K-2)$$

	What Works? <i>Main Effect</i>		
J=5			
n=10	0.24		
n=30	0.22		
J=30			
n=10	0.19		
n=30	0.18		

	What Works? <i>Main Effect</i>	Under what conditions? <i>CL Mod</i>
J=5		
n=10	0.24	0.45
n=30	0.22	0.41
J=30		
n=10	0.19	0.34
n=30	0.18	0.33

	What Works? <i>Main Effect</i>	Under what conditions? <i>CL Mod</i>	Under what conditions? <i>TL Mod</i>	
J=5				
n=10	0.24	0.45	0.29	
n=30	0.22	0.41	0.23	
J=30				
n=10	0.19	0.34	0.12	
n=30	0.18	0.33	0.09	

	What Works?	Under what conditions?	Under what conditions?	For whom?
	Main Effect	CL Mod	TL Mod	Ind Mod
J=5				
n=10	0.24	0.45	0.29	0.18
n=30	0.22	0.41	0.23	0.11
J=30				
n=10	0.19	0.34	0.12	0.08
n=30	0.18	0.33	0.09	0.04

Under what conditions?

□ Cluster level moderator

Challenging given current study sizes

- Effectiveness studies rather than efficacy studies
- If priority, need to consider in design stage

Under what conditions?

□ Teacher level moderator

- Number of teachers per school matters
- If priority, need to consider in design phase

■ For whom?

□ Individual level moderator

- In many cases, reasonable given current study sizes
- If priority, need to consider in design phase

Extensions

- □ Multisite studies
- □ R code available jessaca.spybrook@wmich.edu
- Some parts implemented in PowerUP! <u>http://web.missouri.edu/~dongn/</u>
- □ Add to Optimal Design Plus

Thank You!

Questions?

Please email me: jessaca.spybrook@wmich.edu