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The distinctive feature that separates Bayesian statistical
inference from its frequentist counterpart is its focus on
describing and modeling all forms of uncertainty.

The primary focus of uncertainty within a Bayesian modeling
exercise concerns prior knowledge about model parameters.

In the Bayesian framework, all unknowns are assumed to be
random, described by probability distributions.

Parameters constitute the central focus of statistical modeling,
and because they are, by definition, unknown, Bayesian
inference encodes background knowledge about parameters in
the form of the prior distribution.
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Within the Bayesian framework, parameters are not the only
unknown elements.

The Bayesian framework recognizes that models themselves
possess uncertainty insofar as a particular model is typically
chosen based on prior knowledge of the problem at hand, and
the variables that have been used in previously specified
models.

This form of uncertainty often goes unnoticed.
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Quoting Hoeting et al. (1999)
“Standard statistical practice ignores model
uncertainty. Data analysts typically select a model
from some class of models and then proceed as if the
selected model had generated the data. This
approach ignores the uncertainty in model selection,
leading to over-confident inferences and decisions that
are more risky than one thinks they are.”(pg. 382)

An internally consistent Bayesian framework for structural
equation modeling and estimation must also account for model
uncertainty.

The current approach to addressing the problem of uncertainty
lies in the method of Bayesian model averaging (BMA).
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This talk examines Bayesian model averaging as a means of
improving the predictive performance of structural equation
models.

We expand the framework of Madigan and his collegues by
considering a structural equation model as a special case of a
directed acyclic graph.

We then provide an algorithm that searches the model space
for sub-models that satisfy the conditions of Occam’s razor and
Occam’s window and obtains a weighted average of the
sub-models using posterior model probabilities as weights.
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The organization of this talk is as follows.

1 Brief overview Bayesian SEM.

2 Outline the method of Bayesian model averaging and Occam’s
window following closely the work of Madigan and his colleagues
(e.g. Madigan and Raftery 1994, Raftery et al., 1997).

3 Description of our algorithm for searching the space of possible
sub-models of a general structural equation model.

4 Description of simulation study and case study

5 Results and conclusion

7 / 41



Introduction

Bayesian
Structural
Equation
Modeling

Bayesian
Model
Building

Bayesian
Model
Averaging

The
BMA-SEM
Method

Simulation
Study

Case Study

Conclusion

Bayesian SEM

A structural equation model among observed variables can be
specified as follows. Let

y = α + By + Γx + ζ (1)

It is notationally convenient to arrange the model parameters
into sets with common conjugate distributions as .

θnorm = {α,B,Γ} (2)
θIW = {Φ,Ψ} (3)
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Formally, we write

θnorm ∼ N(µ,Ω), (4)

where µ and Ω are the mean and variance hyperparameters,
respectively, of the normal prior.

For blocks of variances and covariances in Ξ and Ψ, we
assume that the prior distribution is inverse-Wishart, i.e.

θIW ∼ IW (R, δ), (5)

where R is a positive definite scale matrix, and δ > q − 1, where
q is the number of observed variables.

Different choices for R and δ will yield different degrees of
“informativeness” for the inverse-Wishart distribution.
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Once priors are elicited for all model parameters, MCMC is
used to obtain estimates of their posterior distributions.

Commercial software for conducting Bayesian structural
equation modeling include AMOS and Mplus.

Open source programs such as JAGS, rjags, and OpenBUGS
can be used to specify Bayesian SEMs.

Most software default to non-informative (uniform or highly
diffused) priors.
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Bayesian Model Building

The frequentist and Bayesian goals of model building are the
same.

First, a researcher will specify an initial model relying on a
lesser or greater degree of prior theoretical knowledge.

Second, this model will be fit to data obtained from a sample
from some relevant population.

Third, an evaluation of the quality of the model will be
undertaken, examining where the model might deviate from the
data, as well as assessing any possible model violations. At this
point, model respecification may come into play.

Finally, depending on the goals of the research, the “best
model” will be chosen for some purpose.
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Despite these similarities there are important differences -
particularly in the model specification stage.

For Bayesians, the first phase of modeling building requires the
specification of a full probability model for the data and the
parameters of the model, where the latter requires the
specification of the prior distribution.

The notion of model fit, therefore, implies that the full probability
model fits the data.

Lack of model fit may well be due to incorrect specification of
likelihood, the prior distribution, or both.
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Another difference between the Bayesian and frequentist goals
of model building relates to the justification for choosing a
particular model among a set of competing models.

Model building and model choice in the frequentist domain is
based primarily on choosing the model that best fits the data.

This has certainly been the key motivation for model building,
respecification, and model choice in the context of structural
equation modeling (Kaplan 2009).

In the Bayesian domain, the choice among a set of competing
models is based on which model provides the best posterior
predictions.

That is, the choice among a set of competing models should be
based on which model will best predict what actually happened.
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Bayesian Model Averaging

Consider a quantity of interest such as a future observation.

Following Madigan and Raftery (1994), we will denote this
quantity as Υ.

Next, consider a set of competing models Mk, k = 1, 2, . . . ,K
that are not necessarily nested.

The posterior distribution of Υ given data y can be written as

p(Υ|y) =

K∑
k=1

p(Υ|Mk)p(Mk|y). (6)

where p(Mk|y) is the posterior probability of model Mk written
as

p(Mk|y) =
p(y|Mk)p(Mk)∑K
l=1 p(y|Ml)p(Ml)

, l 6= k. (7)
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The interesting feature of equation (6) is that p(Mk|y) will likely
be different for different models.

The term p(y|Mk) can be expressed as an integrated likelihood

p(y|Mk) =

∫
p(y|θk,Mk)p(θk|Mk)dθk, (8)

where p(θk|Mk) is the prior distribution of θk under model Mk

(Raftery et al., 1997).

Thus, BMA provides an approach for combining models
specified by researchers.
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The advantage of BMA has been discussed in Madigan and
Raftery (1994), who showed that BMA provides better
predictive performance than that of a single model based on a
log-score rule.

We show that a Bayesian model averaged structural model
(BMA-SEM) also provides better prediction of the endogenous
variable of interest than any single model, including the initially
specified model.

We show this through predictive coverage as well as the
log-score rule.
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BMA is difficult to implement.

1 The number of terms in p(Υ|y) =
∑K

k=1 p(Υ|Mk)p(Mk|y) can be
quite large and the corresponding integrals are hard to compute.

2 Eliciting p(Mk) may not be straightforward. The uniform prior
1/M is often used.

3 Choosing the class of models to average over is also challenging.

The problem of reducing the overall number of models that one
could incorporate in the summation has led to a solution based
on the notion of Occam’s window (Madigan and Raftery, 1994).
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Occam’s Window

To motivate the idea behind Occam’s window, consider the
problem of finding the best subset of predictors in a linear
regression model.

Following Raftery et al., (1997) we consider an initially large
number of predictors, but perhaps the goal is to find a subset
that provides accurate predictions.

As noted in the earlier quote by Hoeting et al. (1999), the
concern in drawing inferences from a single “best” model is that
the choice of a single set of predictors ignores uncertainty in
model selection.

Occam’s window (Madigan and Raftery, 1994) provides such an
approach for Bayesian model averaging by reducing the subset
of models under consideration.
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The Occam’s window algorithm proceeds in two steps (Raftery
et al., 1997).

In the first step, models are eliminated if they predict the data
less well than the model that provides the best predictions.

Consider a set of models Mk, k = 1 . . .K, and a cutoff value C
chosen in advance by the analyst.

A′ =

{
Mk :

maxl{p(Ml|y)}
p(Mk|y)

≤ C

}
. (9)

Equation (9) compares the model with the largest posterior
model probability, maxl{p(Ml|y)}, to a given model p(Mk|y).

If the ratio in equation (9) is less than or equal to a chosen
value C, then it is discarded from the set of models to be
included in the model averaging.
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In the second step, models are discarded from consideration if
they receive less support from the data than simpler
sub-models.

B =

{
Mk : ∃Ml ∈ A′,Ml ⊂Mk,

p(Ml|y)

p(Mk|y)
> 1

}
. (10)

Equation (10) states that there exists a model Ml within the set
A′ and where Ml is simpler than Mk.

If the simpler model receives more support from the data than
the more complex model, then it is included in the set B.

Notice that the second step corresponds to the principal of
Occam’s razor (Madigan and Raftery, 1994)
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With step 1 and step 2, the problem of Bayesian model
averaging is simplified by replacing equation (6) with

p(Υ|y,A) =
∑
Mk∈A

p(Υ|Mk, y)p(Mk|y,A), (11)

where A is the relative complement of A′ and B. That is, the
models under consideration for Bayesian model averaging are
those that are in A′ but not in B.
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The BMA-SEM Method

The general steps of our BMA-SEM method are as follows

1 Specify an initial model of interest recognizing that this may not
be the model that generated the data.

2 Implement the up and down algorithm to reduce the space of
models to a reasonable size,

3 Obtain the posterior model probabilities for each model,

4 Obtain the weighted average of structural parameters over each
model, weighted by the posterior model probabilities.

5 Compare predictive performance of the BMA-SEM to the initially
specified SEM by computing the reduced form of the models and
calculating the log-score or the predictive coverage.
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Up and Down Algorithm

We implement Occam’s window by considering path diagrams
as DAGs and use an approach by Madigan and Raftery (1994)
we refer to as the Up and Down Algorithm.

1 A sub-model or super-model of the initial model is obtained by
dropping (adding) an edge (path) from the DAG.

2 Occam’s window is employed to select the sub-models which
predict as well as the best model.

3 The difference between the BICs of two models is used to
compute the log posterior odds with non-informative priors on the
models.
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4 For each comparison, if the difference in BICs between a model
and its sub-model is larger than log(C), then the sub-model is
preferred.

5 If the difference between the BICs is smaller than −log(C), then
the model is preferred and all sub-models discarded because
all remaining sub-models will have a smaller posterior model
probabilities based on monotone test statistics (Gabriel, 1969).

6 If the difference of BICs is between −log(C) and log(C), then
both models are preferred.

7 With this subset of models, we again calculate the difference
between each BIC and the minimum BIC in the subset and
selected sub models as an accepted set of models for BMA if
the corresponding difference of BICs was less than 2× log(C).
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Model Averaging

A set of J (j = 1, 2, . . . , J) possible structural equation models
in A is chosen through the algorithm.

For each model in this set, we calculate posterior model
probabilities as

p(Mj |y) =
exp(−.5×∆BIC)∑J
l=1 exp(−.5×∆BIC)

, l 6= j (12)

where ∆BIC is the difference between the BIC of Mj and the
maximum of the BICs of all the models in the set.

The posterior model probabilities are then used as weights
when obtaining the posterior means of parameters across all
the models in the set.

E(θi|y,Mj) =
∑
Mj∈A

θ̂ip(Mj |y). (13)
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Predictive Performance

To compare the predictive performance based on a BMA-SEM
to the predictive performance based on the initially specified
structural equation model it is convenient to transform the
structural form of the model to its reduced form

(I−B)y = α + Γx + ζ. (14)

If (I−B) is non-singular then equation can be written as

y = (I−B)−1α + (I−B)−1Γx + (I−B)−1ζ (15)
= Π0 + Π1x + ζ∗. (16)

where Π0 is the vector of reduced form intercepts, Π1 the
vector of reduced form slopes, and ζ∗ the vector of reduced
form disturbances with variance matrix, Ψ∗.
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To gauge predictive performance we follow Hoeting, et al.,
(1999).

1 Randomly divide the data set into “model averaging” data and
“prediction” data.

2 Fit a single Bayesian SEM and BMA-SEM to the model averaging
data.

3 Convert the structural form of each model to their reduced forms.

4 Predict the final dependent variable in the reduced form for the
prediction data with the result of the reduced form of the SEM and
BMA-SEM from the model averaging data.

5 Compare their predictive performance based on a 90 percent
predictive coverage interval.
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We can also convert the predictive coverage percentage into a
log score.

The theory of BMA states that the model averaged coefficients
will attain better prediction than any other model based on the
log-score rule.

Scoring rules yield a measure of the accuracy of probabilistic
predictions.

The goal is to maximize the log-score.

The log of the predictive performance is the negative of
surprisal, a measure often used in Bayesian inference.
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Simulation Study

Figure 1: Initial path model.
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For comparison purposes, a single Bayesian SEM (BSEM)
based on the original model was fit to the model averaging
data.

We used conjugate but highly diffused priors for all parameters.

Posterior distributions of the parameters were obtained using
the “rjags” program in R (Plummer, 2015).
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The ”coda” package (Plummer, 2015) was also used for
post-processing of diagnostics and summaries.

The algorithm was set to produce 5,000 burn-in iterations, with
495,000 post-burn-in draws and a thinning interval of 50, from
two chains starting at different locations of the posterior
distribution.

Inspection of diagnostics showed that all parameters stabilized
to their respective posterior distributions.
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Results of simulation study

Table 1: Selected models by BMA for the simulation data

Parameter M1 M2 M3

y1∼x1 • • •
y2∼x1 • • •
y3∼x1
y1∼x2 • • •
y2∼x2 • • •
y3∼x2 • • •
y1∼x3 • • •
y2∼x3 • •
y3∼x3
y2∼y1 • •
y3∼y1 • • •
y3∼y2 • • •

BIC 45229.95 45233.29 45235.78
PMP 0.804 0.152 0.044

Note. PMP; posterior model probability.
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Table 2: Comparison of the result of BMA to the result of the BSEM for the simulation data

BMA BSEM
Parameter mean(β|y) SD(β|y) P(β|y)% EAP SD 95% PPI

y1∼x1 0.101 0.020 100.0 0.100 0.020 0.061 0.139
y2∼x1 2.987 0.025 100.0 2.983 0.025 2.934 3.032
y3∼x1 0.000 0.000 0.0 -
y1∼x2 0.082 0.020 100.0 0.082 0.020 0.043 0.122
y2∼x2 0.121 0.025 100.0 0.118 0.025 0.101 0.167
y3∼x2 1.037 0.029 100.0 1.037 0.029 0.980 1.096
y1∼x3 2.983 0.020 100.0 2.983 0.020 2.944 3.022
y2∼x3 0.363 0.103 95.6 0.249 0.077 0.094 0.401
y3∼x3 0.000 0.000 0.0 -
y2∼y1 0.014 0.032 19.6 0.052 0.025 0.003 0.101
y3∼y1 0.111 0.009 100.0 0.111 0.009 0.093 0.129
y3∼y2 0.748 0.009 100.0 0.748 0.009 0.731 0.765

Note. EAP; expected a posteriori, SD; posterior standard deviation, PPI;
posterior probability interval.
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Table 3: Comparison of the predictive performance for simulation study

Method Simulation (N=2,500)
% Log score

BMA 71.00 -.3425
Best model from BMA 70.44 -.3504
Initial Model (BSEM) 61.08 -.4930

Note. %, percent of predictive coverage, Log score; log score of predictive
coverage.
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Case Study

For the case study, we use data from PISA 2009 to estimate a
model relating reading proficiency to a set of background and
reading strategy variables.

The sample was collected from PISA-eligible students in the
United States, and the sample size was 5,053.

The sample was split into a model averaging set (N = 2,526)
and a predictive testing set (N = 2,527).
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Exogenous variables are Gender (male=0, female=1),
immigrant status (Immigr), and a measure of the economic,
social, and cultural status of the student (ESCS).

Mediating variables are three measures of student reading
strategies: memorization strategies (MEMOR), elaboration
strategies (ELAB), and control strategies (CSTRAT).

The first plausible value of the reading assessment was used
as the final outcome variable.

Also for comparison purposes, a BSEM was specified for the
PISA example with diffused conjugate priors on all model
parameters.
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Case Study

Figure 2: Initial path model.
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Results of case study

Table 4: Selected models by BMA for the PISA data

Parameter M1 M2 M3 M4
MEMO∼ESCS • • •
ELAB∼ESCS • • • •
CSTRAT∼ESCS • • • •
Reading∼ESCS • • • •
MEMO∼Gender • • • •
ELAB∼Gender • • •
CSTRAT∼Gender • • • •
Reading∼Gender • • • •
MEMO∼Immigr • • •
ELAB∼Immigr
CSTRAT∼Immigr •
Reading∼Immigr
ELAB∼MEMO • • • •
CSTRAT∼MEMO • • • •
Reading∼MEMO • • • •
CSTRAT∼ELAB • • • •
Reading∼ELAB • • • •
Reading∼CSTRAT • • • •
BIC 39461.68 39464.55 39464.74 39467.63
PMP 0.664 0.158 0.144 0.034

Note. PMP, posterior model probability.
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Table 5: Comparison of the result of BMA to the result of the BSEM for the PISA data

BMA BSEM
Parameter mean(β|y) SD(β|y) P(β|y)% EAP SD 95% PPI

MEMO∼ESCS 0.069 0.037 84.2 0.057 0.024 0.011 0.103
ELAB∼ESCS 0.096 0.021 100.0 0.140 0.025 0.091 0.188
CSTRAT∼ESCS 0.178 0.017 100.0 0.275 0.024 0.228 0.322
Reading∼ESCS 0.358 0.018 100.0 -
MEMO∼Gender 0.276 0.043 100.0 0.274 0.043 0.190 0.359
ELAB∼Gender -0.144 0.048 96.6 -0.021 0.044 -0.108 0.066
CSTRAT∼Gender 0.182 0.031 100.0 0.297 0.043 0.213 0.380
Reading∼Gender 0.235 0.032 100.0 -
MEMO∼Immigr 0.170 0.090 84.2 -
ELAB∼Immigr 0.000 0.000 0.0 0.142 0.058 0.029 0.257
CSTRAT∼Immigr 0.013 0.034 14.4 0.229 0.057 0.119 0.341
Reading∼Immigr 0.000 0.000 0.0 -
ELAB∼MEMO 0.458 0.018 100.0 -
CSTRAT∼MEMO 0.443 0.016 100.0 -
Reading∼MEMO -0.221 0.019 100.0 -0.251 0.020 -0.291 -0.211
CSTRAT∼ELAB 0.371 0.015 100.0 -
Reading∼ELAB -0.131 0.018 100.0 -0.149 0.019 -0.187 -0.112
Reading∼CSTRAT 0.338 0.021 100.0 0.442 0.022 0.399 0.484

Note. EAP, expected a posterior; SD, posterior standard deviation; PPI,
posterior probability interval.
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Table 6: Comparison of the predictive performance for case study

Method PISA (N=2,527)
% Log score

BMA 90.34 -.1015
Best model from BMA 90.30 -.1020
BSEM 88.44 -.1228

Note. %, percent of predictive coverage; Log score, log score of predictive
coverage.
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Conclusion

For decades, the focus of attention in SEM has been on
goodness-of-fit.

This focus has led to a proliferation of alternative fit indices that
are designed to mitigate the known sensitivities of the LR test.

This focus on goodness-of-fit is understandable but has
detracted from developing models that could be used beyond
the immediate investigation.
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The question of using a model for some purpose beyond the
immediate investigation leads us to consider the accuracy of a
model’s predictions.

The issue of predictive accuracy is a central feature of Bayesian
statistics - arguably more central than goodness-of-fit.

Indeed, the BIC and DIC get us close to choosing models
based on considering predictive accuracy.

If the goal of model building is one of predictive accuracy, then
attachment to one’s specific model is of less importance.

Thus, we are less concerned about the fit of our model and
more concerned about finding a model that will predict well.
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In the Bayesian world, BMA is known to yield models that
perform better than any given sub-model on the criteria of
predictive accuracy.

This is due to the fact that not all models are equally good, as
measured by their posterior model probabilities – yet all models
contain some important information.

By combining models, while at the same time accounting for
model uncertainty, we obtain a “stronger” model in terms of
predictive accuracy.

Popular notions of the idea of model averaging include Nate
Silver’s “538” website and his book “The Signal and the Noise”
(2012).
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We show that Bayesian model averaging can be applied to
structural equation models.

We show that the theory of BMA works in the SEM domain and
obtains a model yields better predictions than any given
sub-model.

As always, the full benefit of our BMA-SEM approach will rest
on its application to practical problems where prediction is of
high priority.
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THANK YOU
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