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“"Does Every Student Need to Take Every

Assessment in My Study?”

* Quick answer:
L 66N0!99
— Can be treated as a missing data solution...

Plenty of examples in the literature
— Accelerated longitudinal designs
— Planned missing data designs
« Efficiency-of-measurement design
— Measurement applications
« Matrix sampling
 Adaptive testing
— Sequentially designed experiments



Outline

Motivating contexts
— Exploration studies
— Field-based randomized control trials

Types of Missing Data
Methods for Missing Data

All Ss are assessed, but not assessed on all instruments
— Planned Missing Data Designs
— Computerized Adaptive Testing
— Accelerated Longitudinal Designs
— Hlustration — Reading for Understanding

All instruments are delivered to those who are assessed, but not all Ss are
assessed

— Sequentially Designed Experiments
— Ilustration — CYFS randomized control trials



My Motivating Contexts

[2010-15] Investigator (Statistician). The Language Bases of Skilled
Reading Comprehension (USDOE-IES). UNL Sub-Award PI: T.
Hogan; Ohio State University PI: L. Justice.

[2004-10] Methodological Consultant (Statistician). Evaluation of the
Efficacy of CBC for Addressing Disruptive Behaviors of Children at-
Risk for Academic Failure (USDOE). PI: S. Sheridan.

[2009-14] Co-Principal Investigator (Core Director). The National
Center for Research on Rural Education (R2Ed) (USDOE/IES). PI: S.
Sheridan.

[2010-14] Co-Principal Investigator. A Randomized Trail of Conjoint
Behavioral Consultation (CBC) in Rural Education Settings: Efficacy
for Elementary Students with Disruptive Behavior (USDOE/IES). PI.
S. Sheridan.




What is Missing Data?

Selective non-response:

— Participants complete some measures or respond to some items but
not others

» Skipping some questions, missing a measurement occasion but
returning for the next

Attrition (drop-out):
— the participant ceased to participate in or is removed from the
study

» Changing schools, death/illness, disinterest, because of the
study itself or the outcome measure

Missing by design:
— The observation was not intended to be observed in the first place
« Cohort sequential studies, planned missingness
Human/technology error:

— The observation was lost due to experimenter or technological
error in a non-systematic fashion

» On-line data collection and the internet connection fails during
data storage, spill coffee on the laptop, poor data entry




Types of Missing Data

« Example:
— Suppose we are modeling literacy (YY) as a function of SES (X)

— Some respondents did not complete the literacy measure, so we have
missing data on literacy (YY)

— Why do we have incomplete data on our literacy measure (Y)?
* [s it a random or systematic process?
« Can we determine the nature of any systematic influences?
Typology:
— Missing at Random (MAR)
« Missing Completely at Random (MCAR)

— Most relevant for planned missing data designs — entirely under
the researcher’s control!

— Missing Not at Random (MNAR)

Defining the elements of the system:

X = completely observed variable(s)

Y = partly observed variable(s) [partly missing data]

Z = component(s) of the causes of missingness unrelated to X or Y
R = indicates missingness or the probability of missingness



Missing Completely At Random (MCAR)

The missing values on a given variable (Y) are not associated with other
variables in a given data set or with the variable (Y) itself.

— This does not mean the missing data pattern is random, but that the
missing values are not associated with any other variables.

The probability that Y is missing (R) is not dependent on X or Y.

— In other words, there is no particular reason why some
respondents completed the literacy measure and others did not.

You can think of the measured/observed data points as a random sample of
the theoretically complete data set.

X Z X Z X Z

Y R Y R Y

(a) MCAR (b) MAR (c) MNAR

From Schafer & Graham (2002)




Missing At Random (MAR)

The missing values on a given variable (Y) are not associated with
unobserved variables (Z) or with the variable (YY) itself, but may be
related to other measured/observed variables.

The probability that Y is missing (R) is dependent on X.

— The probability (R) that a literacy score (Y) is missing depends on their
level of SES (X).

— That 1s, respondents with high SES (or low SES) didn’t complete the
literacy measure.

X Z X Z X Z

Y R Y R

—

(a) MCAR (b) MAR (c) MNAR

From Schafer & Graham (2002)




Not Missing At Random (NMAR)

« Some association with unobserved variables (Z) and
maybe with observed variables (X)

— The probability that Y is missing (R) is dependent on
the underlying values of Y itself.

« Respondents who did not complete the literacy measure
did so because of poor literacy skills.

Z X Z

R

(a) MCAR (b) MAR (c) MNAR

From Schafer & Graham (2002)




What Can We Tell From Our Data?

We have access to what is measured/observed for each variable in our
analysis

We can test (reject) MCAR
MAR is not testable (Potthoff et al, 2006)

— We cannot distinguish between MAR and MNAR because we
would need values of the missing data points

— To do so would require knowledge of what was not measured

In the case of a planned missing data design, we (the experimenter)
are the mechanism (Z) leading to the probability of missing data (R).

— As long as the selection process is non-systematic, then we meet
the MCAR assumption.




Missing Data Techniques

« Most assume MAR or MCAR

 Traditional techniques
— Pair-wise & List-wise Deletion
— Sample-wise & Case-wise Mean Substitution
— Regression Imputation w/ Focal or Full Item Pools
— Stochastic Regression Imputation
— Multiple-group SEM

« Modern techniques
— Full Information Maximum Likelihood (FIML)
— Multiple Imputation (M)



Deletion Approaches

 List-wise Deletion
— If a single data point is

Obs BADLO BADL1 BADL3 BADL6 MMSED MMSE1 MMSE3 MMSE6

. ! 6 95 9% 100 B B 2% 2
missing, delete case 2010 10 40 2% % 20 B 2
_ Nic uni 395 100 100 100 27 29 29 28
N iIs uniform bUt_Sma” _ 490 100 100 100 3 30 27 29
— Acceptable only if power is g jg gg % 100 gg gg 23 3g
not an issue and the 740 0 100 9% 9 2 3 30
Incomplete data is at least 6 % 10 o 100 % 0 2 X

9 5 80 75 8 2% 29 2 2%

MAR 0 55 100 100 100 30 30 30 30
_ Biased estimates under M50 100 100 100 30 27 30 24
70 95 100 100 % 28 28 29

MAR and MNAR 13100 100 100 100 30 30 30 30

_ _ W75 90 100 100 30 30 2 30
 Variances biased, % 0 5 10 . 3 3 3 .

: % 2% 5 8 % 2B 2B 2%

means biased 7100 95 100 100 2 29 29 28

18 9 100 100 100 22 26 24 22
19 60 100 100 100 13 24 30 30

N 20 4 70 60 86 28 28 28 28
®




Deletion Approaches

e List-wise Deletion

— This i1s the default in most
packages

Obs BADLO BADL1 BADL3 BADLG MMSE0 MMSE1 MMSE3 MMSEG6

65 9% 9% 100 23 26 26 27
10 10 40 2% % 21 28 U
9% 100 100 100 27 29 29 28
9 100 100 100 30 30 27 29
3 80 9 100 2 29 29 30

N P DN —

— We don’t want to delete

. | h a“ hll "H "I | ]
cases (Ss) if we T4 10 100 95 2 29 30 30
intentionally did not collect R R AN

9 50 80 75 8 2% 29 2 2%
data on some measures 10 5 100 100 100 30 30 30 30

1 50 100 100 100 30 27 30 24
12 70 9 100 100 28 28 28 29
13 100 100 100 100 30 30 30 30
14 75 9 100 100 30 30 29 30

1N 2

| A1E 4]

6 26 5 80 9% 28 28 26 27
17100 9 100 100 29 29 29 28
18 9 100 100 100 22 26 24 22
19 60 100 100 100 13 24 30 30
20 46 70 60 8 28 28 28 28




Deletion Approaches

 Pair-wise Deletion
— If a data point is missing,

Obs BADLO BADL1 BADL3 BADL6 MMSEO MMSE1 MMSE3 MMSE6

. 1 65 95 95 100 283 25 25 27
delete cases on an analysis- s W oW W U B B 5 5
by-analysis basis 3 9 100 100 100 27 29 29 28

_ _ 4 90 100 100 100 30 30 27 29

— N varies per analysis (e.g., 5 3 8 9 100 2B 29 29 30

] 6 40 5 . . 2B 277 3 3
correlation, ANOVA) 740 70 100 9% 2 29 30 30
- - 8 95 100 100 100 28 30 29 30

— Unbiased estimates only 2R E A& BEERRER

under MCAR 10 55 100 100 100 30 30 30 30

_ 11 50 100 100 100 30 27 30 24

e Variances, means, SEs 270 95 100 100 28 28 28 29

. 13100 100 100 100 30 30 30 30

biased under MAR and W 75 90 100 100 30 30 29 30
MNAR 5 0 5 10 . 3 3 3 .

_ _ 16 25 5 80 95 23 23 25 20

— Correlation/covariance 7 100 95 100 100 20 29 29 28
] - 1890 100 100 100 22 25 24 22

definite (NPD) 0 45 70 60 8 28 28 28 2




Deletion Approaches

e Pair-wise Deletion

_ Commomy ava“ab]e in Obs BADLO BADL1 BADL3 BADL6 LAMSEU MMSE1 MMSE3 MMSE
most packages, but not as 165 9 95 | 100 2B 26 25 2

2 10 10 40 | 25 |25 21 28 27

the default. 395 100 100 100 27 29 20 28

4 90 100 100 100 |30 30 27| 29

5 30 80 901002 29 2830

: , 6 40 50 . || e |28 27 —

— Again, we don’t want to 7 40 70 10L 9% |20 29 E 30
de|ete cases (Ss) |f we 8 95 100 100/ 100 |28 30 29/ 30

) i ) 9 50 80 75| 8 |2 29 21 2
intentionally did not collect 0 5 100 100 100 30 30 30 30

11 50 100 100/ 100 |30 27 30 24

data on some measures 12 70 95 100 100 |28 28 28 29
13100 100 100/ 100 |30 30 30 30

14 75 90 10r 100780 30 E 30

_ ToRYY 5 0 5 10 == (3 3 —
Ma_ly b? OK for pal_r WISE 16 25 55 80 9 |23 23 27
univariate comparisons but 17 100 95 100 100 |29 29 29 28

- 18 90 100 100/ 100 |22 25 24 22

nOtf_Or O_mn'bus 19 60 100 100/ 100 |13 24 30 30
multivariate analyses 2 4 70 60 & |8 28 28 2

(NPD)




Mean-Substitution Approaches

« Use the mean of the sample (sample-wise) or the mean score of other items
(case-wise) for any missing value

— Variances and correlations/covariances truncated/biased
— Unbiased means under MCAR, MAR, or MNAR
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Modern Model-Based Approaches

« Multiple Imputation (MI) — 3 steps

— Create several complete data sets by imputing missing values (similar to
plausible values)

« CAUTION: m =5 may not be enough (see Graham et al, 2007)
« SAS PROC MI, NORM, others

— Analyze each data set using standard “complete case” methods
« PROC GLIMMIX, Mplus, SPSS ANOVA, etc.

— Combine results into a single result using Rubin’s Rules
« SAS PROC MIANALYZE, MS Excel, others

Full Information Maximum Likelihood (FIML) - simultaneous
— Conditional upon endogenous (Y-side) variables
— Related in principle to the use of multiple group SEM

— Sufficient statistics (means (1) and variances/covariances (X)) are
estimated from the raw incomplete data

« Those estimates then serve as the start values for the ML model
estimation.

— Available in most SEM & HLM programs



Missing Data Resources

« Textbooks

Enders (2010)

— Little & Rubin (2002) [2M edition]

Peer Reviewed Articles

Collins, L. M., Schafer, J. L., & Kam, C. M. (2001). A comparison of inclusive and
restrictive strategies in modern missing data procedures. Psychological Methods, 6, 33-351.

Graham, J.W. (2003). Adding missing-data-relevant variables to FIML-based structural
equation models. Structural Equation Modeling: A Multidisciplinary Journal, 10, 80-100.

Graham, J.W., Olchowski, A.E., & Gilreath, T.D. (2007). How many imputations are really
needed? Some practical clarifications of multiple imputation theory. Prevention Science, 8,
206-213.

Graham, J.W., Taylor, B.J., Olchowski, A.E., & Cumsille, P.E. (2006). Planned missing
data designs in psychological research. Psychological Methods, 11, 323-343.

Rubin, D.B. (1976) Inference and missing data. Biometrika, 63, 581-592.

Schafer , J.L., & Graham, J.W. (2002). Missing data: Our view of the state of the art.
Psychological Methods, 7, 147-177.

Handbook of Psychology: Research Methods in Psychology (Volume 2)

Graham, Cumsille, & Elek-Fisk (2003)

This list is NOT exhaustive, just the ones I have found to be the most useful...



All Ss are assessed, but not
assessed on all instruments




Planned Missing Data Designs (PMDDs)

« “Efficiency-of-measurement design” (Graham, Taylor, Olchowski, &
Cumsille, 2006)

— Random sampling

— Optimal Designs
« See Allison, Allison, Faith, Paultre, & Pi-Sunyer (1997)
« Balance cost ($) with statistical power

— Fractional Factorial Designs
« See Box, Hunter, & Hunter (2005)

« Carefully chosen subset of cells from a factorial design focus
“information” on most important conditions while minimizing
resources

— Not so different from adaptive testing...
— Measurement Models

N.



Measurement PMDDs

« Simple matrix sampling
(Shoemaker, 1973)

— Useful for means, but not
correlations

« Fractional block design (McArdle,
1994)

— Allows means + SOME
correlations

— Requires multiple-group SEM
for analysis

Balanced incomplete blocks
(spiral) designs (Johnson, 1992)

— Means & correlations available

— Same number of Ss respond to
each item

Table 1
Example of Simple Multiple Matrix Design

Blocks of items

Form A B C D E F G
1 1 0 0 0 0 0 0
2 0 1 0 0 0 0 0
3 0 0 1 0 0 0 0
4 0 0 0 1 0 0 0
5 0 0 0 0 1 0 0
6 0 0 0 0 0 1 0
7 0 0 0 0 0 0 1
Note. 1 = questions asked; 0 = questions not asked. Letters A—G refer to
different sets of items.
From Graham et al. (2006)
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From McArdle (1994)



Measurement PMDDs (cont.)

» 3-form design (Graham, Hofer, & Piccinin, 1994; others)
— Items split into 4 sets (X, A, B, C)
— All Ss get X + 2 additional sets (XAB, XAC, XBC)

— More hypotheses testable [k(k-1)/2 two-variable effects w/in each set + 2k
two-variable effects across two sets)

* Don’t forget multiplicity!
« Split questionnaire survey design (SQSD; Raghunathan & Grizzle, 1995)

Table 3
Ten-Form, Six-Set Variation of the Split Questionnaire Survey
Design, With X Set

Table 2

The 3-Form Design, With X Set Item set
Item set Form X A B C D E
Form X A B C 1 ! 1 1 0 0 0
2 1 1 0 1 0 0
! ! 1 1 0 3 1 1 0 0 1 0
2 ! ! 0 1 4 1 1 0 0 0 1
3 I 0 1 1 5 1 0 1 1 0 0
Note. 1 = questions asked; 0 = questions not asked. 6 1 0 1 0 1 0
7 1 0 1 0 0 1
From Graham et al. (2006) 8 1 0 0 1 1 0
9 1 0 0 1 0 1
10 1 0 0 0 1 1

Note. 1 = questions asked; 0 = questions not asked.

From Graham et al. (2006)



Measurement PMDDs (cont.)

« 2-method measurement

— Many cases w/ cheap, relatively noisy (lower reliability) measure
* i.e. self-report
« May require a response bias correction model

— Few cases w/ both cheap and expensive, more reliable measure
* i.e. biological markers

Se&j\\\\

Report |
Bias /

Self- Self- CcO Cotinine Health1 || Health2 || Health3 || Health4

Report1 Report2
\Health )

-0.28 From Graham et al. (2006)




Computer Adaptive Testing (CAT)

« A CAT administers items that are most
appropriate for a given ability level

For example, higher-ability examinees will be
administered harder items

Iltems are essentially weighted according to their
difficulty, making test scores comparable

A CAT can often achieve the precision of a fixed-
length test using half as many items

Made practical through Item Response Theory

IRT oa 6,-b)
(IRT) P(X, =1|6,,b,a)=—

1+ eDai (65—h;)



IRT: Item Response Function
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IRT: Item Information
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IRT: Test Information
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How CAT Works

To begin, all examinees are administered moderately difficult items
— Missing an item will result in a lower ability estimate, and the
computer will administer an easier item
— Answering an item correctly will increase one’s ability estimate,
and the computer will administer a more difficult item
Using IRT, the computer estimates the respondent’s ability level after
each item is administered
— Subsequent items are tailored to the respondent’s ability level
Testing continues until the algorithm identifies the difficulty level at
which the respondent will miss about 50% of the items
— Information is concentrated and maximized at this most-
appropriate difficulty level

— Stopping rules are based on EITHER logistical convention (fixed
# of items) OR a sufficiently small standard error




How CAT Works (cont.)

Question 1 @l respondents )

.

Correct—update
ahility estimate

Incarrect—update
ahility e stirm ate

Question 2a Question 2k

Correct—update
ahbility estimate

Incomrect—update
ahbility estimate

Correct—upcate
ability estim ate

Incorrect—update
ability e stirm ate

Liuestion 2a Qe stion 2k Ciuestion 2o
correctincaorrect— correctincorrect— Correctincorrect—
Lipdate ability estimate Lipdate ahility estimate Llpdate ability estim ate

Calculate final ability estirmate: mode of
respondent’s posterior distribution of responses

Image from http://www.nlsinfo.org/nlsy97/nlsdocs/nlsy97/codesup/mapp10.html




Accelerated Longitudinal Designs

« Convergence design
— Bell (1953)
 Cross-sequential design
— Schaie (1965)
« Cohort-sequential design
— Nesselroade & Baltes (1979)
 Accelerated longitudinal design
— Tonry, Ohlin, & Farrington (1991)



What Does Accelerated Mean?

* Overlapping ‘Cohorts’

— A cohort is a group of participants that begin a study at a common age or
grade in school

 Tracked for a limited number of measurement occasions

Groups are linked at their overlapping time points to approximate the true
longitudinal curve/trajectory

G, ¥ G3 —» G, Cohort 3

Time 1 Time 2 Time 3

G, —» G, —» G; Cohort 2

Gk — G, ¥ G, Cohort 1

Time 1 Time 2 Time 3



Accelerated Longitudinal Design

« Advantages
— Allows for assessment of intra-individual change
— Takes less time than a purely longitudinal design
— Subject attrition and cumulative testing effects are not as prevalent
Possible applications
— Any longitudinal research setting
« Developmental research
 Educational or Classroom studies
« Gerontology or aging research



Important Design Features

« May require relatively large sample sizes

subjects (total) are required
— Partly depends on analytic method (i.e. ML vs. OLS estimation)
Sufficiency of overlap

between adjacent groups

Change in Deviance Attitudes

— No universally accepted sample size recommendations, but typically at least 150

— At least two points of overlap are required to test for differences in linear slopes

» More than two if higher order trends are expected (e.g., quadratic, cubic)
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Data from Miyazaki & Raudenbush (2000)




Analytic Models:

Planned Missingness or Individually-Varying Occasions
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Analytic Models:

Planned Missingness or Individually-Varying Occasions

Individually Varying B: Within

Timepoints
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Reading for Understanding
Research Initiative (RfU)

July 1, 2010 through June 30, 2015
Created by the Institute of Education Sciences (IES)

Goal: to develop effective approaches for improving reading comprehension
for all students

6 teams were selected through a competitive, scientific review process
— 5 teams focus on:

 understanding basic processes that contribute to reading
comprehension

 developing and evaluating instructional approaches, curricula,
technology, and professional development for enhancing reading
comprehension

— 6™ team will develop assessments to measure the developmental
trajectories of reading comprehension skills

— Over 130 researchers

« linguistics, cognitive psychology, developmental psychology, reading,
speech and language pathology, assessment and evaluation.



Language and Reading Research
Consortium (LARRC)

« Reading for Understanding Research Initiative
— The Ohio State University (lead) — PI: Laura Justice

 Arizona State University
 University of Kansas

« Lancaster University (UK) L A R R C

 University of Nebraska-Lincoln

Language and Reading Research Consortium

ASU « KU « LU « OSU « UNL
— Study 1: Assessment Panel

* Pre-K through 3" grade
 Longitudinal aims for years 1-5




LARRC vs. RfU

Team Pre 8th | Sth 10th | 1ith | 12th
| Educational
Testing
Sarvice
The Ohio
State
University
i < RfU panels are
Strategic -
sy not all assessing
PIFII‘l.I‘SI‘Iip I I d I I '
ol at all grade levels!
h
:.It:\rarsit',.lnf
lllinais
The
University of
Texasat
: Attrition rate =
Auatie 20% peryesr prekl K 13t Znd g
400 120 [NE0N 120 120
1 year total 400 120 120 120 120
320 95 26
2 year total | 400 440 216 216 216
| 256 77
. 3 year total 400 440 472 2% 2%
LARRC is not  mmlp> “
. 4 year tofal | 400 440 472 458 254 |
collecting all 18
Syesrtotal | 400 440 472 488 515 |

data on all Ss

Yea 1 PK cdhort {n= 400)
Yea 1 K ochart (n=120)
B =3 151 cohort (n= 120)
Yea 1 G2 cdort (n=120)
Yea 1G3 cdort (n=120)



LARRC Study 1: 5-Year Assessment Panel




All instruments are delivered to those
who are assessed, but not all Ss are
assessed




Fixed vs. Sequential Designs

» Fixed experimental design: « Sequential experimental
— Typical design in education design:
and the social and behavioral — Sample size treated as a
sciences random variable

— Sample size and composition « Allows sequential
(e.g., experimental group interim analyses and
allocation) determined prior decision-making
to conducting the experiment _ Based on

cumulative data
and previous design
decisions

« While maintaining
appropriate Type I ()
& Type II (B) error rates



Sequential Designs

Also referred to as adaptive or flexible designs

Current design decisions are sequentially selected
according to previous design points

— Kind of Bayesian...
Fixed design = sample size and composition determined
a priori

Sequential design = the number of _
observations/participants is not predetermined

— Sample size and composition are considered
random due to decision dependence on previous
observations.

« A finite upper limit is often set in practice.
 ~ the original fixed sample size




Primary Benefits of Sequential Designs

« Allow for early termination of experiments if cumulative evidence suggests a
clear effect or lack thereof

« Ethical perspectives:

— Prevent unnecessary exposure to unsafe experimental conditions in terms
of both length of exposure and the number of participants exposed

— Prevent unnecessarily withholding administration when the
experimental condition is clearly beneficial

Logistical perspectives:
— Financial savings due to reduced sample sizes

« Fail to Reject H,: early termination for lack of effectiveness at a total
sample size smaller than would be the case with a fixed design

* Reject H,: a similar savings is observed in the total sample size
required,
— Sample size savings typically reported as greater under H, than
under H,

 Actual sample savings generally reported to be as large as 10% under
H, & as large as 50% under H,




History

1929

— Development of a double sampling inspection procedure for the purpose of
industrial quality control. (Harold F. Dodge and Harry G. Romig)

1938
— Census of Bengalese jute area (Prasanta Chandra Mahalanobis)
1943

— Sequential probability ratio test for military armament testing. (Abraham Wald;
Statistical Research Group at Columbia University: Milton Friedman, W. Allen
Wallis)

— Launched the complementary field of sequential analysis.

» Statistical hypothesis testing procedures which allow a statistical test to be
calculated at any stage of the experiment prior to completion

- 3-alternative rule for inferential decision-making: FTR H,, reject H, or
continue experiment

1960

— Book on sequential medical trials effectively introduced the sequential design of
randomized clinical trials (RCT), (Peter Armitage)

1980°s

— Computerized adaptive testing procedures for educational and psychological
testing based on the principles of sequential design of experiments.

» Roots can be attributed to Alfred Binet (1905) with the start of adaptive
individualized intelligence testing.



Sequential Design Characteristics

« Atleast 1 interim analysis at a pre-specified interim stage prior to formal
completion of the experiment

Statistical details are determined a priori (there’s a protocol)
— #interim stages, n at each stage, desired nominal a and £ levels
— Critical values (boundary values) are computed for each interim stage

« All available data is analyzed (data from that stage + all previous
stages)

» The appropriate test statistic and the Fisher information level (the
inverse of the squared standard error) are computed.

» The test statistic is then compared with critical boundary values
determined a priori to maintain appropriate nominal experiment-wise
Type | and Type Il error rates given the occurrence of multiple
statistical tests at interim stages.

« If the test statistic falls within a decision region, the experiment stops.

« Otherwise, the experiment continues to the next stage or until the
maximum sample size is reached.
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Types of Sequential Designs

« 3 General Types:

— Fully sequential designs

« Continuous monitoring - updated after every observation or
after every participant completes the study

— Group sequential designs

 Considered analogous to fully sequential designs EXCEPT that
boundary values are computed for a predetermined number of
equally spaced stages rather than after each participant

— Flexible sequential designs

« Can be viewed as a compromise between fully sequential and
group sequential designs

» Differ based on sample recruitment and decision-making
criteria.



Limitations of Sequential Designs

 Increased design complexity
 Increased computational burdens
— Determining boundary values
— Controlling the experiment-wise error rate
« Threat to validity due to ability for early termination
— Early termination for efficacy, futility, or participant safety
« Smaller sample sizes can lead to a distrust of the findings
« Some analytic assumption problems due to asymptotic
principles (i.e. ML)
— Early termination decision is more complex than just a
statistical criterion
« Consistency across both primary and secondary outcomes,
risk groups, etc.



Substantive Context
CBC in the Early Grades (Sheridan et al, 2011)

« 4-cohort fixed-design cluster randomized trial to evaluate
the effectiveness of a school-based consultation (CBC)
approach for students with challenging classroom
behaviors

— 22 schools, 90 classrooms/teachers, 207 K-3rd grade
students & parents

— Randomly assigned as small (2-3) parent-teacher groups
to:

* business-as-usual control condition

 experimental CBC condition.
. Stud;; designed to detect a medium standardized effect (ES
=.38).
— Fixed sample size of N = 270 children (k =90

classrooms w/ 3 kids/class) was determined through an a
priori power analysis using Optimal Design.



Methodological Study

(Bovaird et al, 2009; Bovaird, 2010)

Procedures

— Implemented a post hoc application of a sequential design and
analysis strategy

— Cohort (4) = “Group”
— Assuming eventual “known” fixed design conclusions as true...

« What is the degree to which sample size savings may have
been realized if we had implemented a group sequential
design rather than a fixed design?

— All analyses implemented in SAS:
« PROC SEQDESIGN - design the boundary values
 PROC GLIMMIX — analytic model

« PROC SEQTEST - evaluate analytic results based on
boundary values




Adaptive Skills:

Parent vs. Teacher Reports
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Externalizing Behaviors:
Parent vs. Teacher Reports

Parent-Report
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Parent-Teacher Relationship:
Parent vs. Teacher Reports
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Social Skills:

Parent vs. Teacher Reports

Parent-Report

Teacher-Report

Test Plot for TxG
2_
i
M 1
=
i)
(5] -
T4 e
©
=
=
=
w
O\i
H
i
{
Stage i 2 34
T T T
0.0 0.4 0.2 03
Information

O Rejection Region O Acceptance Region o Test Statistic

Standardized £

Test Plot for TxG
3_
o
2_
~
Q l‘
0 i
1 4
0
i
Stage ' 2 3l )4
T T T T T
0.0 0.1 0.2 03 04
Infarmation

O Rejection Region O Acceptance Region o Test Statistic




Sequential vs. Fixed Desigh Results

Table 1. Parameter Estimates (£sz), Standard Errors (SE), and Hypothesis Test (2)
Decisions for Fixed (p) and Sequential (Dec) Analyses

Stage Stage
1 2 3 4 1 2 3 4
(Vteacn=25)  (Ntescn=54)  (Ntescn=80)  (N1eacn=90) (Ntescn=25)  (Nieach=54)  (Nteach=80)  (Nteacn=90)
0.34 -0.03 -0.41 -0.36 BASC - 3.63 259 2.39 2.20
1.80 1.15 0.90 0.88 A S 1.41 1.12 0.91 0.89
0.19 -0.02 045 -0.41 Skﬂfs 257 232 263 246
043 0.49 033 0.34 " 0.01 0.01 0.00 0.01
Continue Accept Hy (Teacher . RejectHy
31 -0.55 0.58 0.39 BASC - -0.82 -1.02 2.23 243
2.3 143 1.27 1.26 Exteralizin S 21 1.59 1.29 1.27
-1.35 0.39 0.46 0.31 B g -0.39 -0.64 -1.73 -1.91
0.09 0.35 0.32 0.38 (Tesched p 0.35 0.26 0.04 0.03
Continue Accept Hy . Continue Continue Continue Reject Hy
-1.05 0.33 1.73 0.94 SSRS - 313 3.16 3.90 3.72
322 2.05 1.91 1.89 Social Skill S 2.55 1.98 1.51 149
0.33 0.16 0.90 0.50 Soom 1.22 1.60 258 2.50
0.37 0.44 0.18 0.31 (Teacher) p 0.11 0.06 0.01 0.01
Continue Accept Hy . Continue Continue Reject Hy
0.03 0.05 0.05 0.03 . 0.13 0.23 0.20 0.19

P P 0.14 011 gn = DE. g 015 0.09 0.08 0.07
Teacher

i 013 0.34 045 0.26 Teacher 0.82 269 267 257
Relationship
(Parent)

BASC -
Adaptive
Skills

(Parent)

BASC -
Extemalizing

Behavior
(Parent)

SSRS -
Social Skills
Score
(Parent)

0.45 037 0.33 0.40 Re"""z”f""p 0.21 0,00 0,00 0,01
Accept Hy (Teecheq Continue Reject Hy
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Conclusions & Things to Think About

 Different approaches for different questions!

Is overlap (i.e. core items/measures) necessary?
— Overlap across Ss vs. across items/measures. ..
— Yes — common items/measures should reflect central hypotheses
— Yes — necessary for linking, equating, etc.
How large should the core be?
— Balanced sets, but not necessarily
What should be included in the core?
— Important effects!
— What is/are the effect size(s)?

 Different sample sizes for different effects — a small effect size
requires more (complete) data.

Where should the core occur?
— Probably not last
— Counterbalanced is ideal but sometimes impractical
* Don’t forget experimental control!
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