

MAP ACADEMY

Methodology, Analytics & Psychometrics

Analyzing Data from Complex Sampling Designs: An Overview and Illustration

Natalie Koziol, MA, MS Methodologist, MAP Academy Presented on 12/12/14

Outline

- Probability (random) sampling
- Sampling strategies
- Inferential frameworks
- Data analysis considerations
- Data analysis example

PROBABILITY SAMPLING

Requirements

- 1) The set of all possible samples, given the sampling strategy, can be defined
- 2) Each possible sample has a known probability of being selected, P(S = s)
- 3) Each population unit has a nonzero probability of being selected, $\pi_i > 0$
 - π_i is the "inclusion probability" of unit *i*

•
$$\pi_i = \sum_{i \in s} P(S = s)$$

4) A random mechanism is used to select a sample with probability P(S = s)

Example

- Target population
 - Family pets
- Sampling frame
 - List of all units in the target population
 - □ Hugo
 □ Nala
 □ Smokey
 □ Pepper
- Sampling strategy
 - Obtain simple random sample of size n = 2

Example, cont'd

• Define set of all possible samples and determine sample selection probabilities

S	Sample Units	P(S=s)
<i>s</i> ₁	Hugo, Nala	1/6
<i>s</i> ₂	Hugo, Smokey	1/6
<i>S</i> ₃	Hugo, Pepper	1/6
S_4	Nala, Smokey	1/6
<i>S</i> ₅	Nala, Pepper	1/6
<i>s</i> ₆	Smokey, Pepper	1/6

Example, cont'd

• Calculate inclusion probabilities

Population Unit	π_i
Hugo	$P(S = s_1) + P(S = s_2) + P(S = s_3) = 1/2$
Nala	$P(S = s_1) + P(S = s_4) + P(S = s_5) = 1/2$
Smokey	$P(S = s_2) + P(S = s_4) + P(S = s_6) = 1/2$
Pepper	$P(S = s_3) + P(S = s_5) + P(S = s_6) = 1/2$

Example, cont'd

- Use random mechanism to select sample
 - e.g., Use the SURVEYSELECT procedure in SAS

```
DATA PopPets;

INPUT name $;

DATALINES;

Hugo
Nala

Smokey

Pepper

;

PROC SURVEYSELECT DATA=PopPets METHOD=SRS n=2 SEED=21701

OUT=SamplePets; RUN;

PROC PRINT DATA=SamplePets; RUN;
```

Obs	name
1	Hugo
2	Nala

Non-Probability Sampling

- Convenience sampling, purposive sampling
- Generally cheaper and less complex than probability sampling
- May be the only option
 - e.g., When studying hidden or hard-to reach populations
- More susceptible to selection bias than probability sampling!
 - Selection bias results from the sampled population not matching the target population
 - Threatens the external validity (generalizability) of inferences

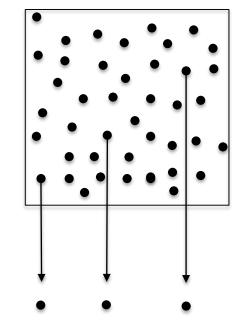
SAMPLING STRATEGIES

Random Sampling Strategies

- Element sampling
- Stratified sampling
- Cluster sampling

Element Sampling

- Basis for all other sampling strategies
- Sampling unit = observation unit
- Types
 - Simple random sampling (SRS)
 - Bernoulli sampling
 - Poisson sampling
 - Systematic sampling



Element Sampling: SRS

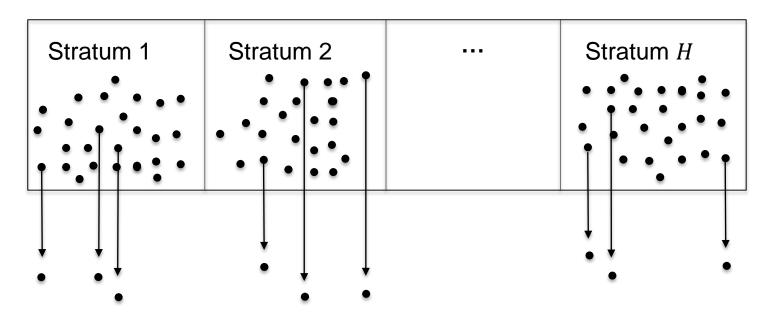
- Randomly select *n* units from a population of *N* units
- With replacement (SRSWR)
 - Sampled unit placed back in population after each draw
 - Units can be sampled more than once
 - Also referred to as unrestricted sampling (URS)
- Without replacement (SRSWOR)
 - Sampled unit NOT placed back in population after draw
 - Units CANNOT be sampled more than once
 - Also referred to simply as simple random sampling
- $\pi_i = n/N$

Element Sampling: Other Types

- Bernoulli sampling
 - Similar to SRSWOR but n is a random variable
 - Specify constant inclusion probability ($\pi_i = \pi$)
 - Select each unit with probability π
- Poisson sampling
 - Similar to Bernoulli sampling but unequal inclusion probabilities
- Systematic random sampling
 - Randomly select starting point from sampling frame and then sample at fixed interval of N/n
 - Special type of clustering but often acts like SRS

Stratified Sampling

- Divide the population into *H* strata
- Perform element sampling independently within each stratum



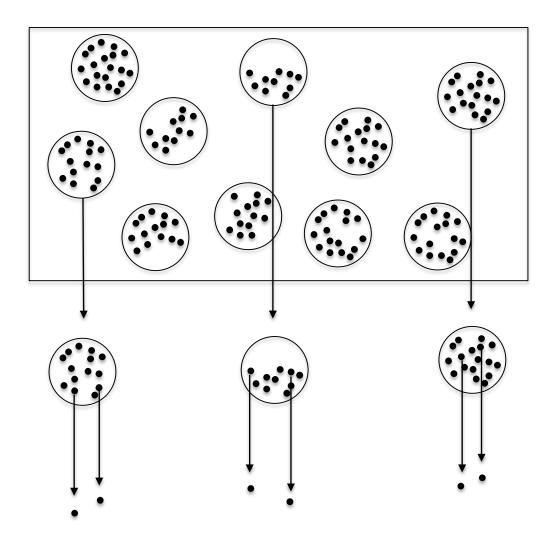
Stratified Sampling

- Equal allocation
 - $-n_h$ is constant across all h
- Proportional allocation
 - $-n_h$ is proportional to N_h
- Optimal allocation
 - Greater proportion of units selected from strata that are large, heterogeneous, and inexpensive to sample
 - Neyman allocation is a special case

Stratified Sampling

- More control over sample representativeness
 Less chance of obtaining a "bad" sample
- Potentially more efficient method of sampling
 - Allows variation in sampling frame, design, and field procedures across strata
- Enables domain (subpopulation) analysis
- Greater precision (smaller standard errors)

- Primary sampling unit ≠ observation unit
- One-stage clustering
 - Use element sampling strategy to sample clusters of units
 - Clusters = primary sampling units (PSUs)
 - Observe all units within each sampled PSU
- Two-stage clustering
 - Stage 1: Use element sampling strategy to sample PSUs
 - Stage 2: Use element sampling to sample individual units within the sampled PSUs
 - Individual units = second-stage units (SSUs)



- Methods for sampling PSUs
 - Equal probability sampling methods
 - Probability proportional to size (PPS) methods
 - Inclusion probability of PSU is proportional to a measure of the PSU's size
 - Several different PPS methods (e.g., WR, WOR, systematic, Brewer, Murthy, Sampford)

- Disadvantages
 - Less precision (larger standard errors)
- Advantages
 - May be the only option
 - May be the more time and cost efficient option
 - Permits multilevel inferences

INFERENTIAL FRAMEWORKS

Inferential Frameworks

- Goal of sampling is to make inferences about the population
- Need formal statistical framework to link sample to population
 - Design-based framework (randomization theory)
 - Model-based framework
 - Hybrid framework

Design-Based Framework

- Requires probability sampling
 - Inclusion indicators (Z_i 's) are random variables

$$f_i = \begin{cases} 1 \text{ if unit } i \text{ is in the sample} \\ 0 \text{ otherwise} \end{cases}$$

(0 otherwise

– Measured outcomes $(Y_i$'s) are assumed to be fixed quantities

Design-based estimators

- Use of design weights
- Standard errors derived from the design
- Permits descriptive inferences about finite population parameters
 - Parameters are generally simple functions (e.g., mean, total) of the Y_i 's

Model-Based Framework

- Does not require probability sampling
 - Y_i 's are random variables
 - Specify a hypothetical probability model for Y_i
 - If probability sampling is used, then Z_i 's are also random variables
- Model-based estimators
 - Design features specified as part of the model (e.g., use multilevel modeling, truncated regression)
 - Standard errors derived from the model
- Permits predictive inferences about infinite (super-) population parameters
 - Parameters are the parameters of the model (e.g., regression coefficients)

Contrasting Weaknesses

- Weaknesses of design-based framework
 - Doesn't lend itself to answering the types of questions relevant to social science research
 - Limited to simple univariate/bivariate investigations
 - Limited to description
- Weaknesses of model-based framework
 - Inferences susceptible to model misspecification
 - Cumbersome reliance on model specification to account for sample design features
 - Results in highly parameterized models (blurs interpretation, reduces statistical power)
 - Complete and appropriate specification is difficult

Hybrid Framework

- Combines the traditional frameworks
 - Relies on model specification and design-adjusted estimation
 - Assuming probability sampling, provides descriptive inferences about finite population parameters
 - Assuming correct model specification, provides predictive inferences about infinite population parameters
- Continuum of modeling options
 - Aggregated approaches
 - Rely more heavily on adjusted estimation
 - The focus of this presentation
 - Disaggregated approaches
 - Rely more heavily on model specification

DATA ANALYSIS CONSIDERATIONS

Accounting for the Design

- Need to account for design features in order to obtain valid inferences
- Adjustments
 - Weighting
 - Alternative variance estimators
 - Finite population correction (FPC)
 - Domain analysis
- Requires statistical software that can handle complex sampling designs

Design Weights

- Need to account for unequal inclusion probabilities
 - Weight each sample observation by the inverse of its inclusion probability

• $w_i = 1/\pi_i$

- Generally do not need to account for equal inclusion probabilities
 - Self-weighting sample
 - Weighting may still be necessary if computing totals or performing multilevel modeling

Example

Stratum	Unit	Height	π_{ih}	w _{ih}
Male	1	72	1/2	2
Male	2	70	1/2	2
Male	3	74	1/2	2
Male	4	72	1/2	2
Female	5	64	1/3	3
Female	6	66	1/3	3
Female	7	62	1/3	3
Female	8	63	1/3	3
Female	9	64	1/3	3
Female	10	65	1/3	3

Average height in the population = 67.2 inches

Unweighted sample estimate $-\frac{70+74+63+65}{2}$			
4			
= 68 inches			
Weighted sample estimate			
$70 \times 2 + 74 \times 2 + 63 \times 3 + 65 \times 3$			
=2 + 2 + 3 + 3			
= 67.2 inches			

Complexities of Weighting

- Weight adjustments
 - Complex adjustments may be made to design weights to account for nonresponse
 - $-\widetilde{w}_i = 1/(\pi_i \hat{\varphi}_i)$ where $\hat{\varphi}_i$ is the estimated probability that unit *i* responds
- Multiple weight options
 - Secondary datasets often include multiple weight options
 - Appropriate weight depends on several factors
 - Type of analysis (e.g., longitudinal vs. cross-sectional)
 - Unit of analysis (e.g., child vs. school)
 - Respondent (e.g., parent-report, direct observation of child)

Alternative Variance Estimators

- Need to adjust standard errors (SEs) to account for the design
- Assumption of independent and identically distributed random variables is untenable outside of SRS
- SEs will tend to be overestimated in the presence of stratification
- SEs will tend to be underestimated in the presence of clustering

Alternative Variance Estimators

- Closed-form (theoretical) solutions for SEs only available for very simple analyses
- Use an approximation method
 - Taylor series (linearization) methods
 - Random group methods
 - Resampling and replication methods
 - Balanced repeated replication (BRR)
 - Jackknife
 - Bootstrap
 - Generalized variance functions

Finite Population Correction

- Downward adjustment made to SEs when sampling without replacement
 - Increase in sampling fraction results in decrease in sampling variability
- fpc = (1 f)
 - -f is the sampling fraction of the PSUs
 - For SRSWOR, f = n/N
- Only available when using Taylor series variance estimation method
- Typically ignored in practice when f < .05

Domain Analysis

- Researchers are often interested in particular subgroups of the population
- SEs and inferential tests will generally be incorrect if analyses are performed separately by subgroups
- A more appropriate approach is to conduct a domain (subpopulation) analysis
 - Zero-weight approach
 - Multiple-group approach

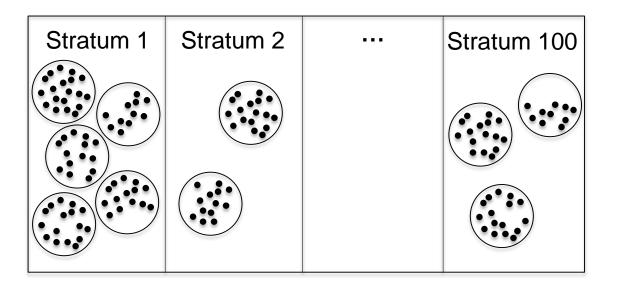
Statistical Software Options

- AM statistical software
- Data Analysis System (DAS) (for NCES data)
- Mplus
- PowerStats (for NCES data)
- R package "survey"
- SAS survey procedures
- SPSS complex samples module
- Stata
- SUDAAN

DATA ANALYSIS EXAMPLE

Simulated Population

- 1,000 PSUs nested within 100 strata
 2 to 18 PSUs nested within each stratum
- 24,587 total SSUs nested within the PSUs
 10 to 40 SSUs nested within each PSU



Sampling Design

- First stage
 - Sampled 2 PSUs without replacement from each stratum with probability proportional to size (PPS)
 - 200 total PSUs sampled
- Second stage
 - Sampled 5 SSUs from each PSU using SRSWOR
 - 1,000 total SSUs sampled

Sample Data File

• First 10 cases*

Obs	stratum	psu	ssu	x1	x2	x 3	x4	y1	y2	wt
1	1	367	8881	1	0.62625	1	1.09675	0	-0.47781	40.3066
2	1	367	8887	1	0.62625	1	1.35400	1	1.30236	40.3066
3	1	367	8894	1	0.62625	0	-0.66075	0	-1.59707	40.3066
4	1	367	8900	1	0.62625	1	1.54148	1	2.37954	40.3066
5	1	367	8903	1	0.62625	1	2.27028	1	1.68341	40.3066
6	1	479	11627	1	-0.00300	0	0.60575	1	1.20603	41.0316
7	1	479	11649	1	-0.00300	1	1.50519	1	2.05838	41.0316
8	1	479	11652	1	-0.00300	1	-0.29731	1	0.02299	41.0316
9	1	479	11654	1	-0.00300	1	-0.08718	0	-0.73679	41.0316
10	1	479	11658	1	-0.00300	0	0.03111	1	0.84361	41.0316

*BRR & Jackknife replicate weights (BRRrep1-BRRrep104, JKrep1-JKrep200) not shown 41 of 60

Analysis 1

- Examine descriptive statistics for y_1 and y_2
- Use Jackknife method for variance estimation

Analysis 1: Mplus

```
TITLE: Analysis 1;
DATA: FILE = sample.csv;
VARIABLE: NAMES ARE stratum psu ssu x1 x2 x3 x4 y1 y2 wt
BRRrep1-BRRrep104
JKrep1-JKrep200;
USEVARIABLES ARE y1 y2;
CATEGORICAL ARE y1 y2;
CATEGORICAL ARE y1;
WEIGHT = wt;
REPWEIGHTS = JKrep1-JKrep200;
ANALYSIS: TYPE = COMPLEX;
ESTIMATOR = ML;
REPSE=JACKKNIFE2;
MODEL:
OUTPUT: SAMPSTAT;
```

UNIVARIATE	PROPORT	IONS A	AND	COUNTS	FOR	CATEGORICAL	VARIABLES
¥1							
Catego	ry 1	0.50	5	505.	042		
Catego	ry 2	0.49	5	494.	958		
							Two-Tailed

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
Means				
¥2	-0.011	0.088	-0.127	0.899

43 of 60

Analysis 1: R

	mean	SE
as.factor(y1)0	0.50504	0.0274
as.factor(y1)1	0.49496	0.0274

	total	SE
as.factor(y1)0	12426	671.29
as.factor(y1)1	12178	677.90

	mean	SE
y2	-0.011101	0.0876

Analysis 1: SAS

PROC SURVEYFREQ DATA=sample VARMETHOD=JK;

TABLE y1;

WEIGHT wt;

REPWEIGHTS JKrep1-JKrep200 / JKCOEF = 1; RUN;

PROC SURVEYMEANS DATA=sample VARMETHOD=JK;

VAR y2;

WEIGHT wt;

REPWEIGHTS JKrep1-JKrep200 / JKCOEF = 1; RUN;

	Table of y1								
y1	Frequency	Weighted Frequency	Std Dev of Wgt Freq	Percent	Std Err of Percent				
0	498	12426	671.28751	50.5042	2.7390				
1	502	12178	677.90276	49.4958	2.7390				
Total	1000	24604	62.22160	100.000					

Statistics							
Variable	N	Mean	Std Error of Mean	95% CL for Mean			
y2	1000	-0.011101	0.087576	-0.1837921	0.16159069		

45 of 60

Analysis 2

- Estimate a logistic regression model to determine the effect of x₄ on y₁
- Use Taylor series method for variance estimation
- Perform domain analysis for subpopulation $x_1 = 1$

Analysis 2: Mplus

```
TITLE: Analysis 2;
DATA: FILE = sample.csv;
VARIABLE: NAMES ARE stratum psu ssu x1 x2 x3 x4 y1 y2 wt
BRRrep1-BRRrep104
JKrep1-JKrep200;
USEVARIABLES ARE y1 X4;
CATEGORICAL ARE y1;
WEIGHT = wt;
CLUSTER = psu;
STRATIFICATION = stratum;
SUBPOPULATION = x1 EQ 1;
ANALYSIS: TYPE = COMPLEX;
ESTIMATOR = MLR;
MODEL: y1 ON x4;
```

		Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
Y1 X4	ON	1.213	0.115	10.520	0.000
Thresholds Y1\$1		-0.101	0.115	-0.881	0.378

Analysis 2: R

Coefficients:								
E	stimate Sto	⅓. Error ⊂	t value	Pr(> t)				
(Intercept)	0.1012	0.1149	0.881	0.383				
X4	1.2134	0.1153	10.520	1.37e-13	<u> </u>			
Signif. codes	: 0 [•] ***	0.001 **	"' 0.01	'*' 0.05	• • •	0.1	6	'1

Analysis 2: SAS

PROC SURVEYLOGISTIC	DATA=sample	VARMETHOD=TAYLOR;
CLUSTER psu;		
STRATA stratum;		
DOMAIN x1;		
MODEL y1 (DESCENDING) = x4;	
WEIGHT wt; RUN;		

Analysis of Maximum Likelihood Estimates							
Parameter Estimate Standard Error t Value Pr >							
Intercept	0.1012	0.1149	0.88	0.3805			
x4	1.2134	0.1154	10.52	<.0001			
NOTE: The degrees of freedom for the t tests is 100.							

Analysis 3

- Estimate a multiple linear regression model to determine the effects of x₂ and x₃ on y₂
- Use BRR method for variance estimation

Analysis 3: Mplus

```
TITLE: Analysis 3;
DATA: FILE = sample.csv;
VARIABLE: NAMES ARE stratum psu ssu x1 x2 x3 x4 y1 y2 wt
BRRrep1-BRRrep104
JKrep1-JKrep200;
USEVARIABLES ARE y2 x2 x3;
WEIGHT = wt;
REPWEIGHTS = BRRrep1-BRRrep104;
ANALYSIS: TYPE = COMPLEX;
ESTIMATOR = ML;
REPSE = BRR;
MODEL: y2 ON x2 x3;
```

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
Y2 ON				
X2	-0.513	0.053	-9.597	0.000
Х3	-0.313	0.108	-2.904	0.004
Intercepts				
¥2	0.096	0.068	1.410	0.159
Residual Variances				
¥2	2.028	0.099	20.588	0.000

Analysis 3: R

Coefficients:								
	Estimate St	d. Error t	value	Pr(> t)				
(Intercept)	0.09632	0.06832	1.410	0.16178				
x2	-0.51324	0.05348	-9.596	9.1e-16	***			
x3	-0.31362	0.10807	-2.902	0.00458	**			
Signif. code	es: 0 '***'	0.001 '**	' 0.01	'*' 0.05	'.' C).1 '	•••	1

Analysis 3: SAS

```
PROC SURVEYREG DATA=sample VARMETHOD=BRR;
MODEL y2 = x2 x3 / SOLUTION;
WEIGHT wt;
REPWEIGHTS BRRrep1-BRRrep104; RUN;
```

Estimated Regression Coefficients						
Parameter	Estimate	Standard Error	t Value	Pr > t		
Intercept	0.0963208	0.06832472	1.41	0.1616		
x2	-0.5132398	0.05348241	-9.60	<.0001		
x3	-0.3136247	0.10806653	-2.90	0.0045		
Note: The degrees of freedom for the t tests is 104.						

REFERENCES

General sampling references

- Kish, L. (1965). *Survey sampling*. New York, NY: Wiley.
- Lohr, S. L. (2010). Sampling: Design and analysis (2nd ed.). Boston, MA: Brooks/Cole.
- Särndal, C.-E., Swensson, B., & Wretman, J. (1992). *Model assisted survey sampling*. New York, NY: Springer-Verlag.
- Skinner, C. J., Holt, D., & Smith, T. M. F. (Eds.). (1989). *Analysis of complex surveys*. New York, NY: John Wiley & Sons.
- Wolter, K. M. (2007). Introduction to variance estimation (2nd ed.). New York, NY: Springer.

References for structural equation modeling of data from complex sampling designs

- Asparouhov, T. (2005). Sampling weights in latent variable modeling. *Structural Equation Modeling: A Multidisciplinary Journal, 12*, 411-434.
- Asparouhov, T., & Muthén, B. (2005). Multivariate statistical modeling with survey data. Mplus Web Note. Muthén & Muthén.
- Stapleton, L. M. (2006). An assessment of practical solutions for structural equation modeling with complex sample data. *Structural Equation Modeling: A Multidisciplinary Journal, 13*, 28-58.

References for weighted multilevel modeling

- Asparouhov, T. (2004). Weighting for unequal probability of selection in multilevel modeling. Mplus Web Notes: No. 8. Muthén & Muthén.
- *Asparouhov, T. (2006). General multi-level modeling with sampling weights. *Communications in Statistics Theory and Methods, 35*, 439-460.
- Asparouhov, T., & Muthén, B. (2006). Multilevel modeling of complex survey data. In *Proceedings of the Joint Statistical Meeting: ASA Section on Survey Research Methods* (pp. 2718-2726).
- Cai, T. (2013). Investigation of ways to handle sampling weights for multilevel model analyses. *Sociological Methodology, 43*, 178-219.
- Carle, A. C. (2009). Fitting multilevel models in complex survey data with design weights: Recommendations. *BMC Medical Research Methodology, 9*(49).
- Grilli, L., & Pratesi, M. (2004). Weighted estimation in multilevel ordinal and binary models in the presence of informative sampling designs. *Survey Methodology, 30*, 93-103.
- Kovačević, M. S., & Rai, S. N. (2003). A pseudo maximum likelihood approach to multilevel modeling of survey data. *Communications in Statistics Theory and Methods, 32*, 103-121.
- Pfeffermann, D., Skinner, C. J., Holmes, D. J., Goldstein, H., & Rasbash, J. (1998). Weighting for unequal selection probabilities in multilevel models. *Journal of the Royal Statistical Society, Series B, 60*, 23-40.
- *Rabe-Hesketh, S., & Skrondal, A. (2006). Multilevel modelling of complex survey data. *Journal of the Royal Statistical Society, Series B, 60*, 23-56.
- Stapleton, L. M. (2002). The incorporation of sample weights into multilevel structural equation models. *Structural Equation Modeling: A Multidisciplinary Journal, 9*, 475-502.
- Stapleton, L. M. (2012). Evaluation of conditional weight approximations for two-level models. *Communications in Statistics – Simulation and Computation, 41*, 182-204.
- Stapleton, L. M. (2014). Incorporating sampling weights into single- and multilevel analyses. In L. Rutkowski, M. von Davier, & D. Rutkowski (Eds.), *Handbook of international large-scale assessment:* Background, technical issues, and methods of data analysis (pp. 363-388). Boca Raton, FL: CRC Press.

References for inferential frameworks

- Hansen, M., Madow, W., & Tepping, B. (1983). An evaluation of model-dependent and probability sampling inferences in sample surveys. *Journal of the American Statistical Association, 78*, 776-793.
- Kalton, G. (2002). Models in the practice of survey sampling (revisited). *Journal of Official Statistics, 18*, 129-154.
- Little, R. J. A. (2014). Survey sampling: Past controversies, current orthodoxy, and future paradigms. In X. Lin, C. Genest, D. L. Banks, G. Molenberghs, D. W. Scott, & J.-L. Wang (Eds.), *Past, present, and future of statistical science* (pp. 413-428). Boca Raton, FL: CRC Press.
- Muthén, B. O., & Satorra, A. (1995). Complex sample data in structural equation modeling. *Sociological Methodology*, 25, 267-316.
- *Sterba, S. K. (2009). Alternative model-based and design-based frameworks for inference from samples to populations: From polarization to integration. *Multivariate Behavioral Research, 44*, 711-740.
- Wu, J.-Y., & Kwok, O.-M. (2012). Using SEM to analyze complex survey data: A comparison between design-based single-level and model-based multilevel approaches. *Structural Equation Modeling: A Multidisciplinary Journal, 19*, 16-35.

References for software

- AM statistical software
 - <u>http://am.air.org/</u> (homepage)
- Data Analysis System (DAS)
 - <u>http://nces.ed.gov/das/</u> (homepage)
- Mplus
 - <u>http://www.statmodel.com/download/usersguide/Mplus%20user%20guide%20Ver_7_r6_web.pdf</u> (user's guide)
- PowerStats
 - <u>http://nces.ed.gov/datalab/</u> (homepage)
- R package "survey"
 - <u>http://cran.r-project.org/web/packages/survey/index.html</u> (links to user's guide and vignettes)
 - <u>http://r-survey.r-forge.r-project.org/survey/</u> (package homepage)
- SAS
 - <u>http://support.sas.com/documentation/cdl/en/statug/67523/PDF/default/statug.pdf</u> (user's guide)
 - http://support.sas.com/documentation/cdl/en/statug/67523/HTML/default/viewer.htm#statug_introsamp_sect001.htm (overview)
- SPSS Complex Samples module
 - http://library.uvm.edu/services/statistics/SPSS22Manuals/IBM%20SPSS%20Complex%20Samples.pdf (user's guide)
- Stata
 - <u>http://www.stata.com/manuals13/u.pdf</u> (user's guide)
- SUDAAN
 - <u>http://www.rti.org/sudaan/</u> (homepage)
- Comparisons among programs
 - <u>http://www.hcp.med.harvard.edu/statistics/survey-soft/</u>

QUESTIONS? COMMENTS?

For more information, please contact Natalie Koziol at nak371@gmail.com

