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Overview

• Considerations
• Parameters of contingency tables
• Loglinear model

• Hypotheses to be tested
• Interpretation of estimates
• Model selection

• Useful parameterization for some categorical models
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Considerations

• Categorical and discrete data
• Poisson (count data)
• Binomial (dichotomous data)
• Multinomial (polytomous data)

• Research questions
• All variables are categorical
• Want to describe and understand associations between variables
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Parameters
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Categorical Data

• Frequencies or cell counts 
• Compute probabilities

• 𝑝𝑝𝑖𝑖 = 𝑓𝑓𝑖𝑖/𝑛𝑛
• E.g., 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 24

93
= 0.258
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Contingency Tables

• Assume two categorical variables, A with i=1,…,I categories and B with 
j=1,…,J categories

• Frequencies/cell counts can be 
arranged into an 𝐼𝐼 × 𝐽𝐽
contingency table
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2 x 2 Contingency Table
• Data from Sewell and Shah 

(1968) on 10,319 Wisconsin 
high school seniors 

• See also Fienberg (1977) 

• Fundamental parameters
• Probabilities
• Odds
• Odds Ratios
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Probabilities
• Joint probabilities

• Describe co-occurrence
• 𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑖𝑖𝑖𝑖

𝑛𝑛
• 𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿,𝑁𝑁𝐿𝐿 = 4653

10319
= 0.45

• Marginal probability
• 𝑝𝑝𝑖𝑖+ = 𝑓𝑓𝑖𝑖+

𝑛𝑛
, also 

𝑓𝑓+𝑖𝑖
𝑛𝑛

• 𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿 = 4965
10319

= 0.48

• 𝑝𝑝𝑌𝑌𝑏𝑏𝑌𝑌 = 3376
10319

= 0.33

• Conditional probability
• Implies causal structure (DV|IV)
• 𝑝𝑝𝑖𝑖|𝑖𝑖 =

𝑝𝑝𝑖𝑖𝑖𝑖
𝑝𝑝𝑖𝑖+

• 𝑝𝑝𝑁𝑁𝐿𝐿|𝐿𝐿𝐿𝐿𝐿𝐿 = 0.45
0.48

= 0.94
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Probabilities
• Joint probabilities

• Describe co-occurrence
• 𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑖𝑖𝑖𝑖

𝑛𝑛
• 𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿,𝑁𝑁𝐿𝐿 = 4653

10319
= 0.45

• Marginal probability
• 𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿 = 4965

10319
= 0.48

• 𝑝𝑝𝑌𝑌𝑏𝑏𝑌𝑌 = 3376
10319

= 0.33
• Conditional probability

• Implies causal structure (DV|IV)
• 𝑝𝑝𝑖𝑖|𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑖𝑖

𝑝𝑝𝑖𝑖+

• 𝑝𝑝𝑁𝑁𝐿𝐿|𝐿𝐿𝐿𝐿𝐿𝐿 = 0.45
0.48

= 0.94
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Probabilities (2)
• Joint probabilities

• Describe co-occurrence
• 𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑖𝑖𝑖𝑖

𝑛𝑛
• 𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿,𝑁𝑁𝐿𝐿 = 4653

10319
= 0.45

• Marginal probability
• Marginal probability

• 𝑝𝑝𝑖𝑖+ = 𝑓𝑓𝑖𝑖+
𝑛𝑛

, also 
𝑓𝑓+𝑖𝑖
𝑛𝑛

• 𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿 = 4965
10319

= 0.48

• 𝑝𝑝𝑌𝑌𝑏𝑏𝑌𝑌 = 3376
10319

= 0.33

• Conditional probability
• Implies causal structure (DV|IV)
• 𝑝𝑝𝑖𝑖|𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑖𝑖

𝑝𝑝𝑖𝑖+

• 𝑝𝑝𝑁𝑁𝐿𝐿|𝐿𝐿𝐿𝐿𝐿𝐿 = 0.45
0.48

= 0.94
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Probabilities (3)
• Marginal probabilities

• 𝑝𝑝𝑖𝑖+ = 𝑓𝑓𝑖𝑖+
𝑛𝑛

, also 
𝑓𝑓+𝑖𝑖
𝑛𝑛

• 𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿 = 4965
10319

= 0.48

• Conditional probability
• Implies causal structure (DV|IV)
• 𝑝𝑝𝑖𝑖|𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑖𝑖

𝑝𝑝𝑖𝑖+

• 𝑝𝑝𝑁𝑁𝐿𝐿|𝐿𝐿𝐿𝐿𝐿𝐿 = 0.45
0.48

= 0.94
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Probabilities (3)
• Marginal probabilities

• 𝑝𝑝𝑖𝑖+ = 𝑓𝑓𝑖𝑖+
𝑛𝑛

, also 
𝑓𝑓+𝑖𝑖
𝑛𝑛

• 𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿 = 4965
10319

= 0.48

• Conditional probability
• structure (DV|IV)
• 𝑝𝑝𝑖𝑖|𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑖𝑖

𝑝𝑝𝑖𝑖+

• 𝑝𝑝𝑁𝑁𝐿𝐿|𝐿𝐿𝐿𝐿𝐿𝐿 = 0.45
0.48

= 0.94
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Probabilities (4)
• Marginal probabilities

• 𝑝𝑝𝑖𝑖+ = 𝑓𝑓𝑖𝑖+
𝑛𝑛

, also 
𝑓𝑓+𝑖𝑖
𝑛𝑛

• 𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿 = 4965
10319

= 0.48

• Conditional probability
• (DV|IV)
• 𝑝𝑝𝑖𝑖|𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑖𝑖

𝑝𝑝𝑖𝑖+

• 𝑝𝑝𝑁𝑁𝐿𝐿|𝐿𝐿𝐿𝐿𝐿𝐿 = 0.45
0.48

= 0.94
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Probabilities (5)
• Conditional probabilities

• Implies causal structure (DV|IV)
• 𝑝𝑝𝑖𝑖|𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑖𝑖

𝑝𝑝𝑖𝑖+
• E.g., What is the probability that they 

are not planning to attend college, 
given low parental encouragement?

• 𝑝𝑝𝑁𝑁𝐿𝐿|𝐿𝐿𝐿𝐿𝐿𝐿 = 0.45
0.48

= 0.94
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Probabilities (5)
• Conditional probabilities

• Implies causal structure (DV|IV)
• 𝑝𝑝𝑖𝑖|𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑖𝑖

𝑝𝑝𝑖𝑖+
• E.g., Given low parental 

encouragement, what is the 
probability that they do not plan to 
attend college?

• 𝑝𝑝𝑁𝑁𝐿𝐿|𝐿𝐿𝐿𝐿𝐿𝐿 = 0.45
0.48

= 0.94
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Odds
• 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑝𝑝/(1 − 𝑝𝑝)

• E.g., Odds of seniors not planning to 
attend college relative to those 
planning to attend

• Ω1+ = 𝑝𝑝1+/𝑝𝑝2+ = 6943
3376

= 2.05
• Seniors are twice as likely to not plan 

to attend college, compared to those 
planning to attend

• E.g., Odds of seniors planning to 
attend college compared to those 
planning to not attend

• 𝛺𝛺2+ = 3376
6943

= 0.48
• Seniors are half as likely to plan to 

attend college, compared to those 
that are not planning to attend
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Odds
• 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑝𝑝/(1 − 𝑝𝑝)

• E.g., Odds of seniors not planning to 
attend college relative to those 
planning to attend

• Ω1+ = 𝑝𝑝1+/𝑝𝑝2+ = 6943
3376

= 2.05
• Seniors are twice as likely to not plan 

to attend college, compared to those 
planning to attend

• E.g., Odds of seniors planning to 
attend college compared to those 
planning to not attend

• 𝛺𝛺2+ = 3376
6943

= 0.48
• Seniors are half as likely to plan to 

attend college, compared to those 
that are not planning to attend
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Odds Ratio
• Odds ratios 

• Compares two odds
• 𝜃𝜃 = 𝐿𝐿𝑜𝑜𝑜𝑜𝑌𝑌1

𝐿𝐿𝑜𝑜𝑜𝑜𝑌𝑌2
= 𝑝𝑝1/(1−𝑝𝑝1)

𝑝𝑝2/(1−𝑝𝑝2)

• Ratio of cross-products
• 𝜃𝜃11 = (𝑝𝑝11/𝑝𝑝12)

(𝑝𝑝21/𝑝𝑝22)
= 𝑝𝑝11𝑝𝑝22

𝑝𝑝12𝑝𝑝21
= 𝑓𝑓11𝑓𝑓22

𝑓𝑓12𝑓𝑓21

• 𝜃𝜃11 = (4653/312)
(2290/3064)

= 4653∗3064
2290∗312

= 19.95

• Students with low parental 
encouragement have estimated 
odds of planning to not attend 
college that are 20 times the 
estimated odds of someone with 
high encouragement
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Odds Ratio (2)
• Local odds ratios

• Adjacent cells
• Local odds ratios perfectly define all 

associations within the table!
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Independence

• No association between two variables
• Equal odds ratios
• Joint probability is a product of the marginals

• Not significantly different from expected values

• Can you collapse the table across a dimension?
• To do this, the variable must have no significant interaction with the other

variable
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Multiway Tables

• Simpson’s Paradox
• When marginal tables leads to 

highly misleading inference
• Specification problem

• Correct functional form 
• All necessary variables
• No unnecessary variables
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Independence (2)

• Tests of independence
• Pearson chi-square statistic, 
𝑋𝑋2

• Likelihood ratio chi-square 
statistic, 𝐺𝐺2

• Degrees of freedom
• (I x J) - # of estimated 

parameters
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Independence (2)

data college;
input encouragement$ attend $ count @@;
datalines;
low no 4653 low yes 312  
high no 2290 high yes 3064
;

proc freq data=college order=data; 
weight count;
tables encouragement*attend/chisq expected;

run;
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Test of Independence (3)

• H0: Independence 
• How plausible is it that the local odds 

ratio is 1?

• Larger values are the result of 
greater differences between 
expected and observed values

• Reject H0
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Loglinear Models
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The Loglinear Model

• A type of generalized linear models (GLM), the family of models that 
extend ordinary least squares regression to non-normal distributions

• Models to describe the joint distributions
• The dependent variable is a cell size (no distinction between dependent and 

independent variables)
• Used to analyze cell counts in a more formal and complete manner 

(Hagenaars, 1993)

• The canonical link is the log link 
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Fundamental Parameters
• Odds and odds ratios

• Range of 0,∞
• Not symmetrical around 0
• Value of 1 indicates equal odds and independence

• Logits
• 𝐿𝐿𝑜𝑜𝐿𝐿(𝜃𝜃)
• Range of −∞,∞
• Symmetric around 0
• Value of 0 indicates equal odds and no difference
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Multiway Tables

• Higher-order odds ratio
• 𝜃𝜃111 = 𝑓𝑓111𝑓𝑓221

𝑓𝑓121𝑓𝑓212
/𝑓𝑓112𝑓𝑓222
𝑓𝑓122𝑓𝑓212

• Partial odds ratio 
• Average conditional odds

• Can’t add and divide odds ratios
• Geometric mean (multiply and take nth root)

• 𝜃𝜃11𝑝𝑝 = (∏𝑘𝑘
𝐾𝐾 𝜃𝜃11𝑘𝑘)1/𝐾𝐾= 𝐾𝐾 𝜃𝜃111𝜃𝜃112 …𝜃𝜃11𝐾𝐾
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The Independence Model

• In probability form
• Joint probabilities can determined by the marginals
• 𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑝𝑝𝑖𝑖+𝑝𝑝+𝑖𝑖

• In expected frequency form
• 𝜇𝜇𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑝𝑝𝑖𝑖+𝑝𝑝+𝑖𝑖
• This form is multiplicative

• Take the natural log of expected frequencies
• Yields the loglinear model
• Additive
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Multiplicative and Additive Models

• Taking the natural log yields the loglinear model of independence 
• 𝜇𝜇𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑝𝑝𝑖𝑖+𝑝𝑝+𝑖𝑖 (Multiplicative, expected frequencies)
• log(𝜇𝜇𝑖𝑖𝑖𝑖) = log 𝑛𝑛 + log 𝑝𝑝𝑖𝑖+ + log(𝑝𝑝+𝑖𝑖) (Additive)
• log(𝜇𝜇𝑖𝑖𝑖𝑖) = 𝜇𝜇 + 𝜆𝜆𝑖𝑖𝐴𝐴 + 𝜆𝜆𝑖𝑖𝐵𝐵 (Additive, loglinear notation)

• Where 𝐴𝐴 and 𝐵𝐵 denote parental encouragement and college plans, respectively
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Analogous to ANOVA

• log(𝜇𝜇𝑖𝑖𝑖𝑖) = 𝜇𝜇 + 𝜆𝜆𝑖𝑖𝐴𝐴 + 𝜆𝜆𝑖𝑖𝐵𝐵
𝜇𝜇 is the average cell size, or “grand mean”
𝜆𝜆𝑖𝑖𝐴𝐴 is the row effect for variable A, or deviation from the average cell size due to 
level 𝑖𝑖
𝜆𝜆𝑖𝑖𝐵𝐵 is the column effect of variable B, or deviation from the average cell size due 
to level 𝑗𝑗

• The equation for the expected values
• Sparseness

• Can’t take the natural log of 0
• If there are cell counts of 0, they need to be adjusted

• Create a new count variable with a very small amount added (e.g., 0.0001)
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Loglinear Model of Independence

• The loglinear model of independence for three variables is:
log(𝑓𝑓𝑖𝑖𝑖𝑖𝑘𝑘𝐴𝐴𝐵𝐵𝐴𝐴) = 𝜇𝜇 + 𝜆𝜆𝑖𝑖𝐴𝐴 + 𝜆𝜆𝑖𝑖𝐵𝐵 + 𝜆𝜆𝑘𝑘𝐴𝐴

• This model omits all higher-order terms
• Assumes there are no interactions between variables (e.g., 𝜆𝜆𝑖𝑖𝑖𝑖𝐴𝐴𝐵𝐵 = 0)
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Estimation

• SAS
• PROC GENMOD
• PROC CATMOD

• Lem
• R

• loglin()
• glm()
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Example – Independence Loglinear Model

data college;

input sex $ encouragement $ attend $ count;

datalines;

male     low   no   1949

male     low   yes   136

male     high  no   1203

male     high  yes  1703

female   low   no   2704

female   low   yes   176

female   high  no   1087

female   high  yes  1361

;
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Example – Independence Loglinear Model

proc genmod data=college; 

class sex encouragement attend;

model count =  sex encouragement attend /

dist=poi link=log lrci type3 obstats;

run;

35



Output – Independence Loglinear Model
• H0: Independence holds

• Overall fit
• Large 𝑋𝑋2 and 𝐺𝐺2

36



Output – Independence Loglinear Model

𝜆𝜆1𝐴𝐴

𝜆𝜆1𝐵𝐵

𝜆𝜆1𝐴𝐴

37

𝜇𝜇

𝜆𝜆2𝐴𝐴

𝜆𝜆2𝐵𝐵

𝜆𝜆2𝐴𝐴

• Convert estimates back into cell counts (dummy-coding approach)
• Males with low encouragement not planning to attend college
• 𝜇𝜇111 = exp 𝜆𝜆 + 𝜆𝜆2𝐴𝐴 + 𝜆𝜆2𝐵𝐵 + 𝜆𝜆1𝐴𝐴 = exp 6.67 + 0 + 0 + 0.72 = 1615.662



Output – Independence Loglinear Model
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The Saturated Loglinear Model

• Models all possible associations between cell counts 

log(𝑓𝑓𝑖𝑖𝑖𝑖𝑘𝑘𝐴𝐴𝐵𝐵𝐴𝐴) = 𝜇𝜇 + 𝜆𝜆𝑖𝑖𝐴𝐴 + 𝜆𝜆𝑖𝑖𝐵𝐵 + 𝜆𝜆𝑘𝑘𝐴𝐴 + 𝜆𝜆𝑖𝑖𝑖𝑖𝐴𝐴𝐵𝐵 + 𝜆𝜆𝑖𝑖𝑘𝑘𝐴𝐴𝐴𝐴 + 𝜆𝜆𝑖𝑖𝑘𝑘𝐵𝐵𝐴𝐴 + 𝜆𝜆𝑖𝑖𝑖𝑖𝑘𝑘𝐴𝐴𝐵𝐵𝐴𝐴

𝜇𝜇 is the average cell size 
𝜆𝜆𝑖𝑖𝐴𝐴, 𝜆𝜆𝑖𝑖𝐵𝐵 , and 𝜆𝜆𝑘𝑘𝐴𝐴 are the main effects of variables A, B, and C
𝜆𝜆𝑖𝑖𝑖𝑖𝐴𝐴𝐵𝐵 , 𝜆𝜆𝑖𝑖𝑘𝑘𝐴𝐴𝐴𝐴 , 𝜆𝜆𝑖𝑖𝑘𝑘𝐵𝐵𝐴𝐴 , and 𝜆𝜆𝑖𝑖𝑖𝑖𝑘𝑘𝐴𝐴𝐵𝐵𝐴𝐴 are higher-order terms
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The Saturated Loglinear Model

• “Saturated” means the number of cells is equal to the number of 
parameters estimated

• Just-identified model

• This model is often not of interest 
• No degrees of freedom available to test hypotheses 
• Does not simplify interpretation of the data

40



Example – Saturated Loglinear Model

proc genmod data=college; 

class sex encouragement attend;

model count = sex|encouragement|attend /

dist=poi link=log lrci type3 obstats;

run;
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Example – Saturated Loglinear Model
• No degrees of freedom to test 

model fit
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Example – Saturated Loglinear Model
• All parameters estimated
• Some non-significant interactions
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Example – Saturated Loglinear Model

• Predicted values perfectly represent the observed data
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Reduced Loglinear Models

• Do you need higher-order terms, or can they be eliminated?
• Reduced models with good fit greatly simplifies the interpretation
• Parsimony

• Possible models
• Model of all possible associations
• Models with main effects and two-ways interactions
• Models with main effects only
• Model of independence
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Reduced Loglinear Models

• A three-variable model that permits some two-way associations 
log(𝑓𝑓𝑖𝑖𝑖𝑖𝑘𝑘𝐴𝐴𝐵𝐵𝐴𝐴) = 𝜇𝜇 + 𝜆𝜆𝑖𝑖𝐴𝐴 + 𝜆𝜆𝑖𝑖𝐵𝐵 + 𝜆𝜆𝑘𝑘𝐴𝐴 + 𝜆𝜆𝑖𝑖𝑖𝑖𝐴𝐴𝐵𝐵 + 𝜆𝜆𝑖𝑖𝑘𝑘𝐵𝐵𝐴𝐴

• Two factor terms describe conditional odds ratios
• 𝜆𝜆𝑖𝑖𝑖𝑖𝐴𝐴𝐵𝐵 association between A and B, controlling for C
• 𝜆𝜆𝑖𝑖𝑘𝑘𝐵𝐵𝐴𝐴 association between B and C, controlling for A

• This model is referred to as (AB, BC)
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Reduced Loglinear Models

• Test whether there is 
conditional independence 
within the multiway table 

• Compare the fit of various 
reduced loglinear models to 
the saturated model 
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Example – Reduced Loglinear Models
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Example – Reduced Loglinear Models
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Example – Reduced Loglinear Models

50



Example – Reduced Loglinear Models

• Cell counts – how do they compared to the saturated model?
• Model (SE, SA, EA) comes the closest to the observed data
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Model Selection
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Loglinear Models

• Hypotheses to be tested
• Independence 
• Reduced models

• Interpretation
• For dummy-coding approach, ANOVA-style decomposition
• Convert estimates into expected cell counts 

• Males with low encouragement not planning to attend college
• 𝜇𝜇111 = exp 𝜆𝜆 + 𝜆𝜆2𝐴𝐴 + 𝜆𝜆2𝐵𝐵 + 𝜆𝜆1𝐴𝐴 = exp 6.67 + 0 + 0 + 0.72 = 1615.662

• Model selection
• Retain the model that fits well and represents the observed data well 
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Loglinear Parameterization of Common 
Categorical Models
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The Logistic Model

• Special case of the generalized linear model 
• Regresses a binary dependent variable on 1+ independent variables
• Models the log of the odds of the dependent variable
• The canonical link function is the logit
• Does not describe relationships among independent variables

• When one variable is binary, the logistic models for that response are 
equal to certain loglinear models

• Construct logits for one variable to help interpret loglinear models (Bishop, 
1969)
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Using Logistic Models to Interpret

• Two types of coding yield identical estimates
• Dummy coding (0, 1)
• Effect coding (-1, 1)

• Identifying constraints and power rules
• ∑𝜆𝜆𝑖𝑖𝐴𝐴 = 0
• Lambdas sum to zero in effect coding approach
• When you change an odd number, change the sign 

• 𝜆𝜆1𝐴𝐴 = −𝜆𝜆2𝐴𝐴

• When you change an even number, same sign
• 𝜆𝜆11𝐴𝐴𝐵𝐵 = −𝜆𝜆12𝐴𝐴𝐵𝐵= −𝜆𝜆21𝐴𝐴𝐵𝐵= 𝜆𝜆22𝐴𝐴𝐵𝐵
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Using Logistic Models to Interpret

• Odds ratios relate to two-factor loglinear parameters and main effects
• The log odds ratio for the effect of A on C

Logit Loglinear
𝛽𝛽1𝐴𝐴 − 𝛽𝛽2𝐴𝐴 𝜆𝜆11𝐴𝐴𝐴𝐴 + 𝜆𝜆22𝐴𝐴𝐴𝐴 − 𝜆𝜆12𝐴𝐴𝐴𝐴 − 𝜆𝜆21𝐴𝐴𝐴𝐴

1) Specify a logit for one variable
2) Substitute the loglinear parameterization for the odds
3) Use power rules to substitute and solve
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Using Logistic Models to Interpret

1) Form a logit for the loglinear model
• log 𝜇𝜇𝑖𝑖𝑖𝑖𝑘𝑘 = 𝜇𝜇 + 𝜆𝜆𝑖𝑖𝑆𝑆 + 𝜆𝜆𝑖𝑖𝐸𝐸 + 𝜆𝜆𝑘𝑘𝐴𝐴 + 𝜆𝜆𝑖𝑖𝑖𝑖𝑆𝑆𝐸𝐸 + 𝜆𝜆𝑖𝑖𝑘𝑘𝑆𝑆𝐴𝐴 + 𝜆𝜆𝑖𝑖𝑘𝑘𝐸𝐸𝐴𝐴

• Suppose A is the dependent variable and E and A are explanatory variables

• 𝑙𝑙𝑜𝑜𝐿𝐿𝑖𝑖𝑙𝑙[𝑃𝑃 𝐴𝐴 = 1 = 𝑙𝑙𝑜𝑜𝐿𝐿 𝑃𝑃 𝐴𝐴=1
1−𝑃𝑃(𝐴𝐴=1

= log 𝑃𝑃 𝐴𝐴=1|𝑆𝑆=𝑖𝑖,𝐸𝐸=𝑖𝑖
𝑃𝑃 𝐴𝐴=2|𝑆𝑆=𝑖𝑖,𝐸𝐸=𝑖𝑖

= 𝑙𝑙𝑜𝑜𝐿𝐿
𝑓𝑓𝑖𝑖𝑖𝑖1
𝑓𝑓𝑖𝑖𝑖𝑖2

= log 𝑓𝑓𝑖𝑖𝑖𝑖1 − log 𝑓𝑓𝑖𝑖𝑖𝑖2

2) Substitute the loglinear parameterization for the odds
= 𝜇𝜇 + 𝜆𝜆𝑖𝑖𝑆𝑆 + 𝜆𝜆𝑖𝑖𝐸𝐸 + 𝜆𝜆1𝐴𝐴 + 𝜆𝜆𝑖𝑖𝑖𝑖𝑆𝑆𝐸𝐸 + 𝜆𝜆𝑖𝑖1𝑆𝑆𝐴𝐴 + 𝜆𝜆𝑖𝑖1𝐸𝐸𝐴𝐴

−(𝜇𝜇 + 𝜆𝜆𝑖𝑖𝑆𝑆 + 𝜆𝜆𝑖𝑖𝐸𝐸 + 𝜆𝜆2𝐴𝐴 + 𝜆𝜆𝑖𝑖𝑖𝑖𝑆𝑆𝐸𝐸 + 𝜆𝜆𝑖𝑖2𝑆𝑆𝐴𝐴 + 𝜆𝜆𝑖𝑖2𝐸𝐸𝐴𝐴)
= (𝜆𝜆1𝐴𝐴−𝜆𝜆2𝐴𝐴) + (𝜆𝜆𝑖𝑖1𝑆𝑆𝐴𝐴 − 𝜆𝜆𝑖𝑖2𝑆𝑆𝐴𝐴) + (𝜆𝜆𝑖𝑖1𝐸𝐸𝐴𝐴−𝜆𝜆𝑖𝑖2𝐸𝐸𝐴𝐴)
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Using Logistic Models to Interpret

1) Form a logit for the loglinear model
• log 𝜇𝜇𝑖𝑖𝑖𝑖𝑘𝑘 = 𝜇𝜇 + 𝜆𝜆𝑖𝑖𝑆𝑆 + 𝜆𝜆𝑖𝑖𝐸𝐸 + 𝜆𝜆𝑘𝑘𝐴𝐴 + 𝜆𝜆𝑖𝑖𝑖𝑖𝑆𝑆𝐸𝐸 + 𝜆𝜆𝑖𝑖𝑘𝑘𝑆𝑆𝐴𝐴 + 𝜆𝜆𝑖𝑖𝑘𝑘𝐸𝐸𝐴𝐴

• Suppose A is the dependent variable and S and E are explanatory variables

• 𝑙𝑙𝑜𝑜𝐿𝐿𝑖𝑖𝑙𝑙[𝑃𝑃 𝐴𝐴 = 1 = 𝑙𝑙𝑜𝑜𝐿𝐿 𝑃𝑃 𝐴𝐴=1
1−𝑃𝑃(𝐴𝐴=1

= log 𝑃𝑃 𝐴𝐴=1|𝑆𝑆=𝑖𝑖,𝐸𝐸=𝑖𝑖
𝑃𝑃 𝐴𝐴=2|𝑆𝑆=𝑖𝑖,𝐸𝐸=𝑖𝑖

= 𝑙𝑙𝑜𝑜𝐿𝐿
𝑓𝑓𝑖𝑖𝑖𝑖1
𝑓𝑓𝑖𝑖𝑖𝑖2

= log 𝑓𝑓𝑖𝑖𝑖𝑖1 − log 𝑓𝑓𝑖𝑖𝑖𝑖2

2) Substitute the loglinear parameterization for the odds
= 𝜇𝜇 + 𝜆𝜆𝑖𝑖𝑆𝑆 + 𝜆𝜆𝑖𝑖𝐸𝐸 + 𝜆𝜆1𝐴𝐴 + 𝜆𝜆𝑖𝑖𝑖𝑖𝑆𝑆𝐸𝐸 + 𝜆𝜆𝑖𝑖1𝑆𝑆𝐴𝐴 + 𝜆𝜆𝑖𝑖1𝐸𝐸𝐴𝐴

−(𝜇𝜇 + 𝜆𝜆𝑖𝑖𝑆𝑆 + 𝜆𝜆𝑖𝑖𝐸𝐸 + 𝜆𝜆2𝐴𝐴 + 𝜆𝜆𝑖𝑖𝑖𝑖𝑆𝑆𝐸𝐸 + 𝜆𝜆𝑖𝑖2𝑆𝑆𝐴𝐴 + 𝜆𝜆𝑖𝑖2𝐸𝐸𝐴𝐴)
= (𝜆𝜆1𝐴𝐴−𝜆𝜆2𝐴𝐴) + (𝜆𝜆𝑖𝑖1𝑆𝑆𝐴𝐴 − 𝜆𝜆𝑖𝑖2𝑆𝑆𝐴𝐴) + (𝜆𝜆𝑖𝑖1𝐸𝐸𝐴𝐴−𝜆𝜆𝑖𝑖2𝐸𝐸𝐴𝐴)
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Using Logistic Models to Interpret

1) Form a logit for the loglinear model
• log 𝜇𝜇𝑖𝑖𝑖𝑖𝑘𝑘 = 𝜇𝜇 + 𝜆𝜆𝑖𝑖𝑆𝑆 + 𝜆𝜆𝑖𝑖𝐸𝐸 + 𝜆𝜆𝑘𝑘𝐴𝐴 + 𝜆𝜆𝑖𝑖𝑖𝑖𝑆𝑆𝐸𝐸 + 𝜆𝜆𝑖𝑖𝑘𝑘𝑆𝑆𝐴𝐴 + 𝜆𝜆𝑖𝑖𝑘𝑘𝐸𝐸𝐴𝐴

• Suppose A is the dependent variable and E and A are explanatory variables

• 𝑙𝑙𝑜𝑜𝐿𝐿𝑖𝑖𝑙𝑙[𝑃𝑃 𝐴𝐴 = 1 = 𝑙𝑙𝑜𝑜𝐿𝐿 𝑃𝑃 𝐴𝐴=1
1−𝑃𝑃(𝐴𝐴=1

= log 𝑃𝑃 𝐴𝐴=1|𝑆𝑆=𝑖𝑖,𝐸𝐸=𝑖𝑖
𝑃𝑃 𝐴𝐴=2|𝑆𝑆=𝑖𝑖,𝐸𝐸=𝑖𝑖

= 𝑙𝑙𝑜𝑜𝐿𝐿
𝑓𝑓𝑖𝑖𝑖𝑖1
𝑓𝑓𝑖𝑖𝑖𝑖2

= log 𝑓𝑓𝑖𝑖𝑖𝑖1 − log 𝑓𝑓𝑖𝑖𝑖𝑖2

2) Substitute the loglinear parameterization for the odds
= 𝜇𝜇 + 𝜆𝜆𝑖𝑖𝑆𝑆 + 𝜆𝜆𝑖𝑖𝐸𝐸 + 𝜆𝜆1𝐴𝐴 + 𝜆𝜆𝑖𝑖𝑖𝑖𝑆𝑆𝐸𝐸 + 𝜆𝜆𝑖𝑖1𝑆𝑆𝐴𝐴 + 𝜆𝜆𝑖𝑖1𝐸𝐸𝐴𝐴

−(𝜇𝜇 + 𝜆𝜆𝑖𝑖𝑆𝑆 + 𝜆𝜆𝑖𝑖𝐸𝐸 + 𝜆𝜆2𝐴𝐴 + 𝜆𝜆𝑖𝑖𝑖𝑖𝑆𝑆𝐸𝐸 + 𝜆𝜆𝑖𝑖2𝑆𝑆𝐴𝐴 + 𝜆𝜆𝑖𝑖2𝐸𝐸𝐴𝐴)
= (𝜆𝜆1𝐴𝐴−𝜆𝜆2𝐴𝐴) + (𝜆𝜆𝑖𝑖1𝑆𝑆𝐴𝐴 − 𝜆𝜆𝑖𝑖2𝑆𝑆𝐴𝐴) + (𝜆𝜆𝑖𝑖1𝐸𝐸𝐴𝐴−𝜆𝜆𝑖𝑖2𝐸𝐸𝐴𝐴)
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Using Logistic Models to Interpret

= (𝜆𝜆1𝐴𝐴−𝜆𝜆2𝐴𝐴) + (𝜆𝜆𝑖𝑖1𝑆𝑆𝐴𝐴 − 𝜆𝜆𝑖𝑖2𝑆𝑆𝐴𝐴) + (𝜆𝜆𝑖𝑖1𝐸𝐸𝐴𝐴−𝜆𝜆𝑖𝑖2𝐸𝐸𝐴𝐴)
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Using Logistic Models to Interpret

= (𝜆𝜆1𝐴𝐴−𝜆𝜆2𝐴𝐴) + (𝜆𝜆𝑖𝑖1𝑆𝑆𝐴𝐴 − 𝜆𝜆𝑖𝑖2𝑆𝑆𝐴𝐴) + (𝜆𝜆𝑖𝑖1𝐸𝐸𝐴𝐴−𝜆𝜆𝑖𝑖2𝐸𝐸𝐴𝐴)
3) Use power rules to substitute again 

= 2𝜆𝜆1𝐴𝐴 + 2𝜆𝜆𝑖𝑖1𝑆𝑆𝐴𝐴 + 2𝜆𝜆𝑖𝑖1𝐸𝐸𝐴𝐴

Loglinear parameters have corresponding logit parameters
𝑙𝑙𝑜𝑜𝐿𝐿𝑖𝑖𝑙𝑙 𝑃𝑃 𝐴𝐴 = 1 = 𝛼𝛼 + 𝛽𝛽1𝑆𝑆+𝛽𝛽1𝐸𝐸
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The Logistic Model

• The equivalent parameterizations enhance interpretation
• Historical breakthrough 

• Logistic models could be solved using iterative proportional fitting, which was 
previously used to solve loglinear models (Goodman, 1964; 1968)
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The Latent Class Model

• Latent class analysis (LCA) is a special case of discrete (finite) mixture 
models (McLachlan & Peel, 2000; Newcomb, 2000)

• Used to identify unobserved or latent groups
• Assumes conditional independence

• Controlling for the latent variable, all manifest variables are independent

• Two equivalent parameterizations (Goodman, 1974; Haberman, 1979)
• Probabilistic
• Loglinear
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The Latent Class Model (3)
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LCA Parameterizations

• The basic LCA model, assuming 3 manifest variables and 1 latent 
variable

• Probabilistic parameterization
𝜋𝜋𝑖𝑖𝑖𝑖𝑘𝑘𝑡𝑡𝐴𝐴𝐵𝐵𝐴𝐴𝐴𝐴=𝜋𝜋𝑡𝑡𝐴𝐴𝜋𝜋𝑖𝑖𝑡𝑡

𝐴𝐴|𝐴𝐴𝜋𝜋𝑖𝑖𝑡𝑡
𝐵𝐵|𝐴𝐴𝜋𝜋𝑘𝑘𝑡𝑡

𝐴𝐴|𝐴𝐴

• 𝜋𝜋𝑡𝑡𝐴𝐴 is the latent class probability or “mixing” probability that a given member 
of the sample is in latent class t

• 𝜋𝜋𝑖𝑖𝑡𝑡
𝐴𝐴|𝐴𝐴,𝜋𝜋𝑖𝑖𝑡𝑡

𝐵𝐵|𝐴𝐴and 𝜋𝜋𝑘𝑘𝑡𝑡
𝐴𝐴|𝐴𝐴 are conditional probabilities that the respondent in latent 

class t responds with 0 or 1 for each manifest indicator variable
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LCA Parameterizations

• To obtain the loglinear form of the model, take the natural log of the 
probabilistic model 

ln 𝑓𝑓𝑖𝑖𝑖𝑖𝑘𝑘𝑡𝑡𝐴𝐴𝐵𝐵𝐴𝐴𝐴𝐴 = 𝜆𝜆 + 𝜆𝜆𝑡𝑡𝐴𝐴 + 𝜆𝜆𝑖𝑖𝐴𝐴 +𝜆𝜆𝑖𝑖𝐵𝐵 + 𝜆𝜆𝑘𝑘𝐴𝐴 +𝜆𝜆𝑖𝑖𝑡𝑡𝐴𝐴𝐴𝐴 + 𝜆𝜆𝑖𝑖𝑡𝑡𝐵𝐵𝐴𝐴 +𝜆𝜆𝑘𝑘𝑡𝑡𝐴𝐴𝐴𝐴

• Includes only the higher-order terms that include the latent variable
• No interaction terms (e.g., 𝜆𝜆𝑖𝑖𝑖𝑖𝑡𝑡𝐴𝐴𝐵𝐵𝐴𝐴 = 0) because the model specifies 

conditional independence (McCutcheon, 1987; 2002)
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LCA Parameterizations

• The two parameterizations are equivalent (Haberman, 1979)
• Same number of parameters
• Same expected values

• Some restrictions can only be imposed in one parameterization
• “Reduced” latent class models

𝜋𝜋𝑖𝑖𝑖𝑖𝑘𝑘𝑏𝑏𝑌𝑌𝐴𝐴𝐵𝐵𝐴𝐴𝐷𝐷𝐷𝐷=𝜋𝜋𝑡𝑡𝑌𝑌
𝐴𝐴|𝐷𝐷𝜋𝜋𝑖𝑖𝑡𝑡𝑌𝑌

𝐴𝐴|𝐴𝐴𝐷𝐷𝜋𝜋𝑖𝑖𝑡𝑡𝑌𝑌
𝐵𝐵|𝐴𝐴𝐷𝐷𝜋𝜋𝑘𝑘𝑡𝑡𝑌𝑌

𝐴𝐴|𝐴𝐴𝐷𝐷𝜋𝜋𝑏𝑏𝑡𝑡𝑌𝑌
𝐷𝐷|𝐴𝐴𝐷𝐷𝜋𝜋𝑌𝑌𝐷𝐷

• Test hypotheses using loglinear parameterization
• Use power rules to obtain  “reduced” model in loglinear form
• Does conditional independence hold across groups?
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Summary

• Loglinear models are an essential method for understanding 
categorical data

• Taking the natural log of cell counts yields an ANOVA decomposition 
• Log odds of cell sizes
• Convert lambda parameters back into odds and odds ratios 

• The two parameterizations permit ANOVA-style decomposition to 
contingency tables

• Aid interpretability 
• Can estimate equivalent logistic models

• Added flexibility in the types of restrictions that can be imposed
• Conditional independence in latent class analysis models
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Ann.Arthur@huskers.unl.edu
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