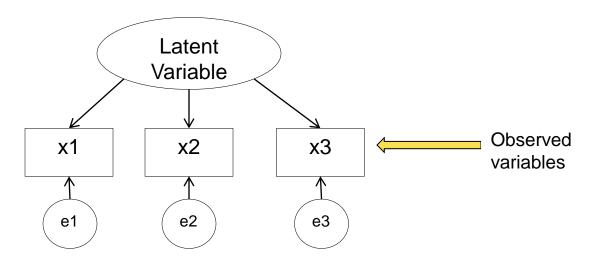


research methodology series

Characterizing Changing Classifications: Practical Illustrations of Latent Transition Analysis (LTA)

Ji Hoon Ryoo, Ph.D. Chaorong Wu, M.A. Carina McCormick, M.A. Nebraska Center of Research on Children, Youth, Families and Schools (CYFS)



Overview

- Introduction to Latent Transition Analysis (LTA)
 - Classification of latent variable models
 - LTA model
 - Markov model as a special case of LTA model
- Model selection and parameter estimates in LTA
 - Model selection
 - Parameter estimates
 - Statistical packages available
- Demonstration of LTA
 - Exploration of change in psychological status
 - Exploration of change in reading proficiency designation
- Discussion
 - Summary
 - Issues

Introduction to LTA - Classification of latent variable models

- In factor analysis, a covariance matrix is analyzed statistically in order to shed light on the underlying latent structure
 - For example, latent variable with three observed variables as indicators

- When the type of latent variable is categorical, the latent variable model is called latent class or latent profile model
 - Their longitudinal version is called *latent transition analysis* (LTA) model

Introduction to LTA - Classification of latent variable models

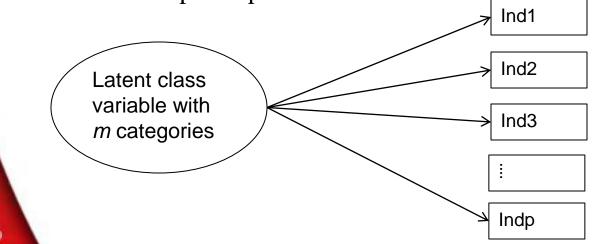
• Both latent and observed variables can be either categorical or continuous, which differentiates between latent variable models (Collins & Lanza, 2011)

		Latent	Variables
		Continuous	Categorical
Indicators	continuous	Factor analysis (FA)	Latent profile analysis (LPA)
	categorical	Item response theory (IRT)	Latent class analysis (LCA)

- It is often more difficult to determine whether the latent variable is categorical or continuous, compared to indicators
- In practice, the applied researcher should consider whether a continuous or categorical operationalization of the construct is more relevant to the research questions at hand

Introduction to LTA - Classification of latent variable models

• Both latent and observed variables can be either categorical or continuous, which differentiates between latent variable models (Collins & Lanza, 2011)


		Latent	Variables
		Continuous	Categorical
Indicators	continuous	Factor analysis (FA)	Latent profile analysis (LPA)
	categorical	Item response theory (IRT)	Latent class analysis (LCA)

• Latent class analysis (LCA) and its longitudinal version, latent transition analysis (LTA), are today's foci.

Introduction to LTA - Latent Transition Analysis (LTA)

- Latent class analysis (LCA)
 - Classifying individuals into latent classes based on observed categorical indicators
 - Latent classes are mutually exclusive and exhaustive
 - True class membership is unknown
- Outcomes of LCA
 - Latent class membership probabilities latent prevalence
 - Item-response probabilities

Introduction to LTA - Latent Transition Analysis (LTA)

- One of primary goal in longitudinal data analysis is to understand the *change* over time
- Modeling <u>change</u> over time
 - For continuous latent variable

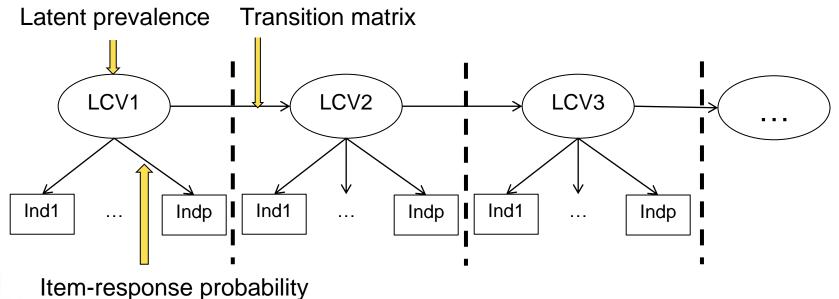
<u>Change</u>: Slope \rightarrow Latent growth model

- For categorical latent variable

<u>Change</u>: *Movement between time points* \rightarrow Latent transition

analysis

		Time	(t +1)
		LC1	LC2
Time of	LC1	<i>p11</i>	p12
Time t	LC2	p21	p22


Note: *P*s are transition probabilities, i.e., p12 is the probability of changing latent class 1 at Time t to latent class 2 at Time (t+1)

Introduction to LTA - Latent transition analysis (LTA)

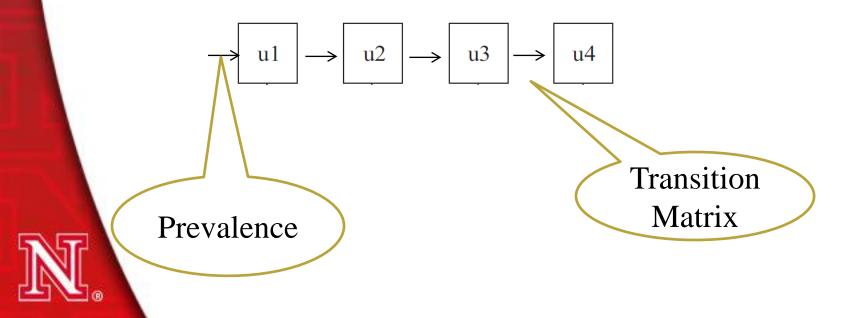
- Latent transition analysis (LTA)
 - LTA is a longitudinal extension of latent class models and enables the investigator to model a dynamic, or changing, latent variables
 - Some development can be represented as movement among latent class membership
 - Different people may take different paths

Introduction to LTA - Latent transition analysis (LTA)

- Outcomes of LTA
 - Latent class membership probabilities latent prevalence
 - Item-response probabilities
 - Transition matrix Change of latent class membership over time

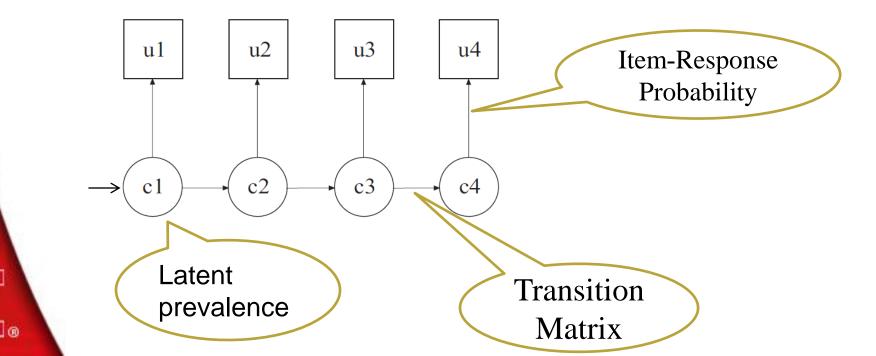
nem-response probability

here the latent class variable has m categories


Introduction to LTA - Markov model as a special case of LTA model

- A special case of Latent Transition Model
 - One item at each time point only
 - The item is categorical
- Data
 - Many individuals are measured repeatedly at a limited number of occasions (one measure at each occasion)

(Time Series Analysis: A few individuals are measured repeatedly at many occasions)


Introduction to LTA - Markov model as a special case of LTA model

- Manifest (Simple) Markov model
 - Measurement is assumed to be perfect
 - Example, "Do you have a job right now (Y/N)?"
 - May be realistic for some types of variables (e.g. disease, employment status) but unlikely to describe educational assessment results

Introduction to LTA - Markov model as a special case of LTA model

- Latent Markov Model
 - Measurement is not perfect
 - For example, "Do the students meet the reading proficiency standard?"
 - Parameters consist of three components

- Estimation methods
 - Expectation-maximization (EM) algorithm
 - Full-Information Maximum Likelihood (FIML)
 - Bayesian method
- Estimation of LTA is based on response patterns in the contingency table based on the number of items
 - Example: The case of 8 dichotomized items over 3 time points provides a contingency table consisting of 16,777,216 cells

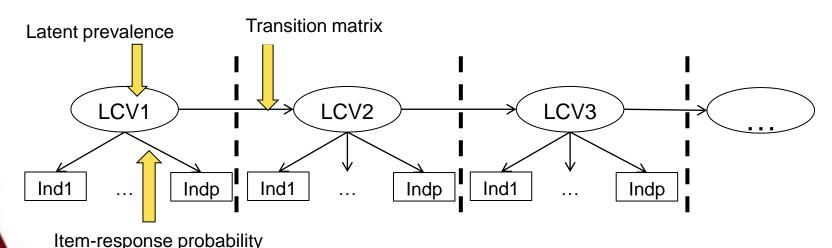
$$W = (2^8)^3 = 16,777,216$$

• Contingency table at Time 1

Response	Item 1	Item 2	Item3	Item 4	Item 5	Item 6	Item 7	Item 8
pattern								
Pattern 1	No	No	No	No	No	No	No	No
Pattern 2	No	No	No	No	No	No	No	Yes
Pattern 3	No	No	No	No	No	No	Yes	No
Pattern 4	No	No	No	No	No	No	Yes	Yes
Pattern 5	No	No	No	No	No	Yes	No	No
Pattern 6	No	No	No	No	No	Yes	No	Yes
Pattern 7	No	No	No	No	No	Yes	Yes	No
Pattern 8	No	No	No	No	No	Yes	Yes	Yes
:								
Pattern 253	Yes	Yes	Yes	Yes	Yes	Yes	No	No
Pattern 254	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes
Pattern 255	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
Pattern 256	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

• Contingency table at Time 1 and Time 2

Response	Item 1	Item 2	Item3	Item	4 Item	5 Item	6 Item	7 Item	8	
pattern Pattern 1	Response pattern	It	em 1 I	tem 2	Item3	Item 4	Item 5	Item 6	Item 7	Item 8
Pattern 2	Pattern 1	N	0 N	No	No	No	No	No	No	No
Pattern 3	Pattern 2	N	0	No	No	No	No	No	No	Yes
Pattern 4	Pattern 3	N	0 1	No	No	No	No	No	Yes	No
Pattern 5	Pattern 4	N	0 N	No	No	No	No	No	Yes	Yes
Pattern 6	Pattern 5	N	0	No	No	No	No	Yes	No	No
Pattern 7	Pattern 6	Ν	0 N	No	No	No	No	Yes	No	Yes
Pattern 8	Pattern 7	N	0 N	No	No	No	No	Yes	Yes	No
:	Pattern 8	N	0 N	No	No	No	No	Yes	Yes	Yes
Pattern 253	:									
Pattern 254	Pattern 253	Y	es Y	les	Yes	Yes	Yes	Yes	No	No
Pattern 255	Pattern 254	Y	es Y	les	Yes	Yes	Yes	Yes	No	Yes
Pattern 256	Pattern 255	Y	es Y	les	Yes	Yes	Yes	Yes	Yes	No
	Pattern 256	Y	es Y	les	Yes	Yes	Yes	Yes	Yes	Yes


• Contingency table at Time 1, Time 2, and Time 3

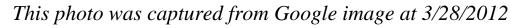
Response	Item 1	Item 2	Item3	Ite	m 4	Item 5	Item	6	Item	7	Item	8				
pattern	Response	It	em 1	Item 2	Ite	em3 I	tem 4	Ite	em 5	Ite	m 6	Item	7	Item	8	
Pattern 1	pattern	Respo	nse	It	em 1	Item 2	2 Iter	n3	Iten	n 4	Item	15	Iten	16	Item 7	Item 8
Pattern 2	Pattern 1	patter														
Pattern 3	Pattern 2	Pattern	1	N	0	No	No		No		No		No]	No	No
Pattern 4	Pattern 3	Pattern	12	N	0	No	No		No		No		No]	No	Yes
Pattern 5	Pattern 4	Pattern	13	N	0	No	No		No		No		No		Yes	No
Pattern 6	Pattern 5	Pattern	ı 4	N	0	No	No		No		No		No		Yes	Yes
Pattern 7	Pattern 6	Pattern	ı 5	N	0	No	No		No		No		Yes]	No	No
Pattern 8	Pattern 7	Pattern	16	N	0	No	No		No		No		Yes]	No	Yes
:	Pattern 8	Pattern	17	N	0	No	No		No		No		Yes		Yes	No
Pattern 253	:	Pattern	ı 8	N	0	No	No		No		No		Yes		Yes	Yes
Pattern 254	Pattern 253	:														
Pattern 255	Pattern 254	Pattern	253	Y	es	Yes	Yes		Yes		Yes		Yes]	No	No
Pattern 256	Pattern 255	Pattern	254	Y	es	Yes	Yes		Yes		Yes		Yes]	No	Yes
	Pattern 256	Pattern	255	Y	es	Yes	Yes		Yes		Yes		Yes		Yes	No
		Pattern	256	Y	es	Yes	Yes		Yes		Yes		Yes		Yes	Yes

- Model fit to select the number of latent classes
 - Likelihood ratio statistics (G^2 ; Agresti, 1990)
 - Reflects how well a latent class/transition model fits observed data
 - The null hypothesis is that the model test is adequate
 - A *p*-value for the G^2 can be obtained by comparing the G^2 test statistics to the reference chi-square distribution
 - df = W P 1
 - Information criteria: smaller is better
 - $AIC = G^2 + 2P$
 - $BIC = G^2 + [\log(N)]P$
 - Where P is a number of parameters and N is a sample size

Model selection and parameter estimates in LTA - Parameters in LTA

- Parameters in LTA
 - Latent prevalence (Delta estimates, Δ)
 - Prevalence in Time 1 is only estimated and prevalence in later time is computed by the result in Time 1 and transition matrices
 - Item-response probabilities (Rho estimates, ρ)
 - Usually fixed over time, assuming the measurement invariance
 - Transition matrices consisting of transition probabilities (Tau estimates, τ)

Model selection and parameter estimates in LTA - Statistical packages available


- SAS Proc LTA* (<u>http://methodology.psu.edu/</u>)
- *Free software*
 - *l*EM (<u>http://spitswww.uvt.nl/~vermunt/</u>)
 - WinLTA (<u>http://methodology.psu.edu/</u>)
 - R packages (<u>https://www.msu.edu/~chunghw/downloads.html</u>)
 - CAT_LVM
 - CAT_LVM_BAYESIAN
- Commercial software packages
 - Mplus* (<u>http://www.statmodel.com/</u>)
 - Latent Gold (<u>http://www.statisticalinnovations.com/</u>)

Note: (*) indicates statistical packages used in this study

Demonstration of LTA

• Example 1: Exploration of change in psychological status (Self-esteem) using *Latent Transition Analysis*

- Data
 - Pacific-Rim Bullying measure (PRBm; Konishi et al., 2009)
 - Administered in School Experiences across Cultures: An International Study
 - General self-esteem from Self-description Questionnaire-I (SDQ-I; Marsh, 1988)
 - Eight items with 4 Likert type response
 - Original Likert type items were transformed by dichotomizing the responses (yes or no) because of distribution problem and missing data
 - Participants were 1180 students
 - From 5th to 9th grade at the fall of 2005 attending nine schools
 - Due to students' transitions, the number of schools increased to 22 over three semesters
 - 1173 at fall of 2005; 1114 at spring of 2006; 999 at fall of 2006

- Research Questions
 - 1. Are there distinct subgroups of students within the sample that exhibit particular patterns of self-esteem?
 - 2. Is there change between latent classes membership across time?
 - 3. If so, how can this change be characterized?
 - 4. If an individual is in a particular latent class at Time t, what is the probability that the individual will be in that latent class at Time (t+1), and what is the probability that the individual will be in a different latent class?

• Marginal Response Proportions

Item	Time 1 (Fal	l,2005)	Time 2 (Spr	ing, 2006)	Time 3 (Fal	, 2006)
	Obs.	Yes	Obs. N	Yes	Obs.N	Yes
I do lots of important						
things	1172	0.869	1112	0.881	996	0.875
In general, I like being the						
way I am	1172	0.923	1112	0.929	995	0.935
Overall, I have a lot to be						
proud of	1169	0.915	1110	0.825	994	0.927
I can do things as well as						
most other people	1171	0.917	1112	0.915	994	0.931
Other people think I am a						
good person	1169	0.944	1109	0.949	995	0.956
A lot of things about me						
are good	1171	0.942	1109	0.944	995	0.946
I am as good as most						
other people	1170	0.927	1109	0.913	993	0.929
When I do something, I do						
it well	1171	0.924	1113	0.936	996	0.945

• LTA was conducted by SAS Proc LTA and its syntax is given below:

```
PROC LTA data=gss10;
Title 'General Self esteem in PRBm with 3 times, 3 statues';
NSTATUS 3;
NTIMES 3;
ITEMS pr4t1 pr5t1 pr6t1 pr7t1 pr8t1 pr9t1 pr10t1 pr11t1
pr4t2 pr5t2 pr6t2 pr7t2 pr8t2 pr9t2 pr10t2 pr11t2
pr4t3 pr5t3 pr6t3 pr7t3 pr8t3 pr9t3 pr10t3 pr11t3;
CATEGORIES 2 2 2 2 2 2 2 2 2 2 2;
measurement times;
seed 741620;
Run;
```


• LTA was conducted by SAS Proc LTA and its syntax is given below:

PROC LTA data=gss10;

Need to specify the number of latent classes and time points

Title 'General Self esteem in PRBm with 3 times, 3 statues';

NSTATUS 3;

NTIMES 3;

ITEMS pr4t1 pr5t1 pr6t1 pr7t1 pr8t1 pr9t1 pr10t1 pr11t1 pr4t2 pr5t2 pr6t2 pr7t2 pr8t2 pr9t2 pr10t2 pr11t2 pr4t3 pr5t3 pr6t3 pr7t3 pr8t3 pr9t3 pr10t3 pr11t3; CATEGORIES 2 2 2 2 2 2 2 2 2 2; measurement times; seed 741620;

Run;

• LTA was conducted by SAS Proc LTA and its syntax is given below:

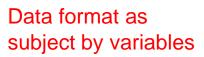
PROC LTA data=gss10;

Title 'General Self esteem in PRBm with 3 times, 3 statues';

NSTATUS 3;

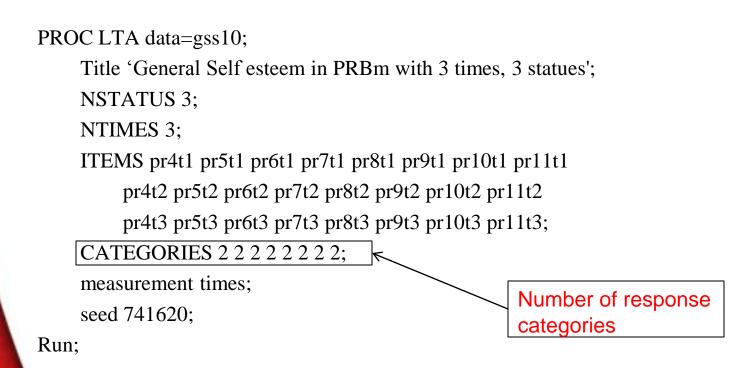
NTIMES 3;

ITEMS pr4t1 pr5t1 pr6t1 pr7t1 pr8t1 pr9t1 pr10t1 pr11t1 pr4t2 pr5t2 pr6t2 pr7t2 pr8t2 pr9t2 pr10t2 pr11t2


pr4t3 pr5t3 pr6t3 pr7t3 pr8t3 pr9t3 pr10t3 pr11t3;

CATEGORIES 2 2 2 2 2 2 2 2;

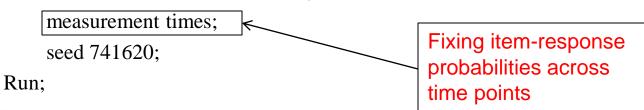
measurement times;


seed 741620;

Run;

• LTA was conducted by SAS Proc LTA and its syntax is given below:

• LTA was conducted by SAS Proc LTA and its syntax is given below:

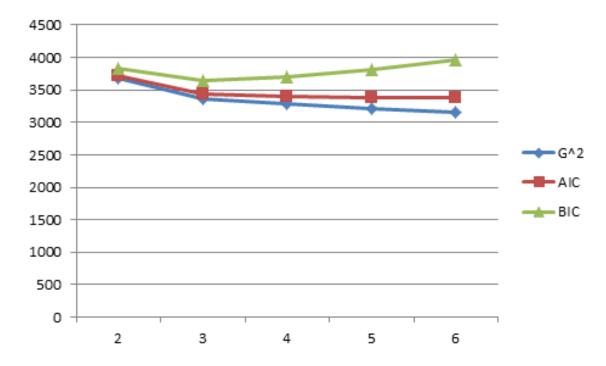

```
PROC LTA data=gss10;
```

Title 'General Self esteem in PRBm with 3 times, 3 statues';

```
NSTATUS 3;
```

NTIMES 3;

ITEMS pr4t1 pr5t1 pr6t1 pr7t1 pr8t1 pr9t1 pr10t1 pr11t1 pr4t2 pr5t2 pr6t2 pr7t2 pr8t2 pr9t2 pr10t2 pr11t2 pr4t3 pr5t3 pr6t3 pr7t3 pr8t3 pr9t3 pr10t3 pr11t3; CATEGORIES 2 2 2 2 2 2 2 2 2 2;



• Result of LTA on General Self-esteem with # = 2 to 6

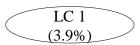
Number of		Model fit					
Latent Statues	G^2*	df	AIC	BIC	Log-likelighood		
2	3677.89	16777194	3719.89	3826.43	-5420.31		
3	3366.72	16777177	3442.72	3635.51	-5264.73		
4	3285.81	16777156	3403.81	3703.13	-5224.27		
5	3213.79	16777131	3381.79	3807.94	5188.26		
6	3162.63	16777102	3388.63	3961.9	-5162.68		

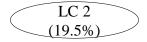
- Since df is too big, it is not suggested to use G^2 statistics
- AIC result indicates that five latent class model is adequate while BIC result indicates that three latent class model is adequate

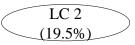

• Result of LTA on General Self-esteem over different latent statues from 2 to 6

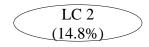
Latent transition model with three latent statues was selected.

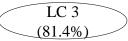
• Latent class prevalence over three time points

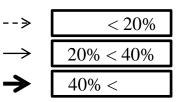

	Latent class prevalence					
Time	Latent class 1	Latent class 2	Latent class3			
Fall, 2005	3.7%	19.5%	76.9%			
Spring, 2006	3.5%	19.5%	77.0%			
Fall, 2006	3.9%	14.8%	81.4%			

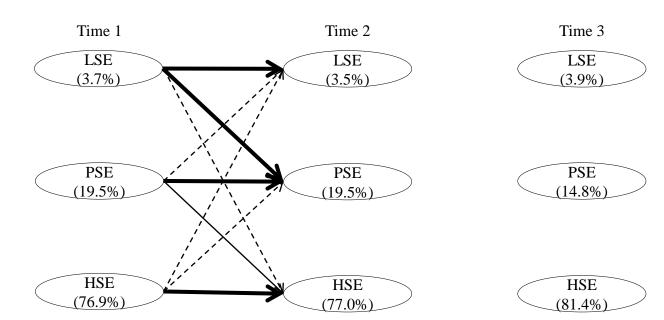





(3.5%)



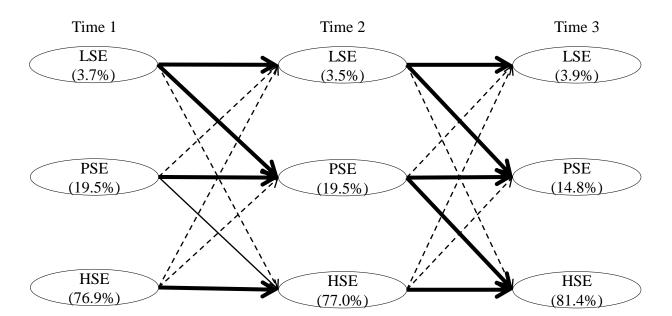

• Item-response probabilities for yes

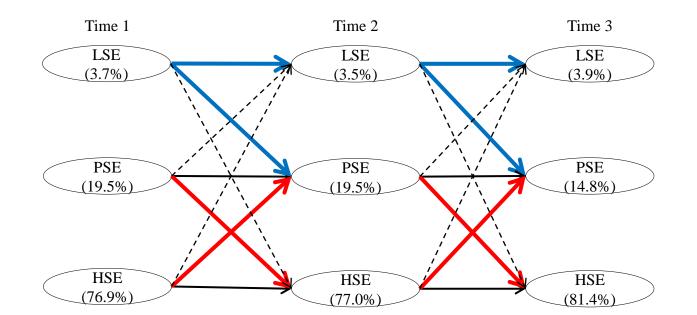

Item	Latent class 1	Latent class 2	Latent class3
I do lots of important things	29.6%	66.2%	94.9%
In general, I like being the way I am	30.0%	78.9%	98.9%
Overall, I have a lot to be proud of	16.3%	76.4%	99.0%
I can do things as well as most other people	38.6%	70.7%	99.3%
Other people think I am a good person	43.7%	83.9%	99.7%
A lot of things about me are good	13.1%	85.9%	100%
I am as good as most other people	23.4%	74.7%	99.4%
When I do something, I do it well	33.1%	79.0%	99.4%

- Latent class 3 High Self-esteem (HSE)
- Latent class 2 Positive Self-esteem (PSE)
- Latent class 1 Low Self-esteem (LSE)

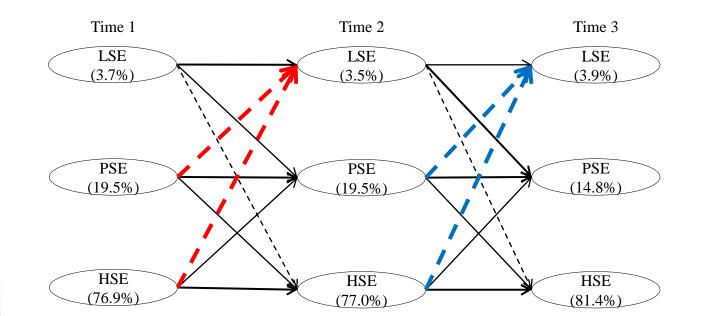
• Latent transition matrix from fall of 2005 to spring of 2006

	Transition probabilities				
Time 1\Time 2	LSE PSE HSE				
LSE	43.87%	43.86%	12.3%		
PSE	6.3%	68.9%	24.8%		
HSE	0.8% 5.8% 93.4%				




• Latent transition matrix from spring of 2006 to fall of 2006

	Transition probabilities				
Time 2\Time 3	LSE	PSE	HSE		
LSE	43.6%	44.0%	12.4%		
PSE	8.3%	50.4%	41.3%		
HSE	0.9% 4.5% 94.6%				



- Discussion 1: Based on the numbers of students changing latent class membership over time
- Many students fluctuate between PSE and HSE.
 - For example, 52 and 57 student move from HSE to PSE and from PSE to HSE, respectively, at 1st transition. 38 and 90 students move from HSE to PSE and from PSE to HSE, respectively, at 2nd transition.
- LSE group has high mobility rate to PSE and HSE

- Discussion 2: In some situations, transitions to LSE from higher SE level might be interested
 - 14 and 8 students from PSE and HSE, respectively at 1st transition
 - 18 and 8 students from PSE and HSE, respectively at 2nd transition
- It might be helpful to understand these movements if we further investigate students' characteristics

Demonstration of LTA

• Example 2: Exploration of change in reading proficiency designation (DIBELS) using *Markov Model*

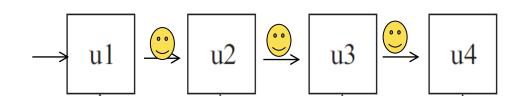
This photo was captured from Google image at 3/28/2012

- Measures of DIBELS Oral Reading Fluency
- Four time points
- 2 categories at each occasion:
 - High Risk (Category 1), Low Risk (Category 2)
- <u>Research Question</u>:
 - How do students progress in oral reading fluency over time?
 - Or how do they change at Risk status?

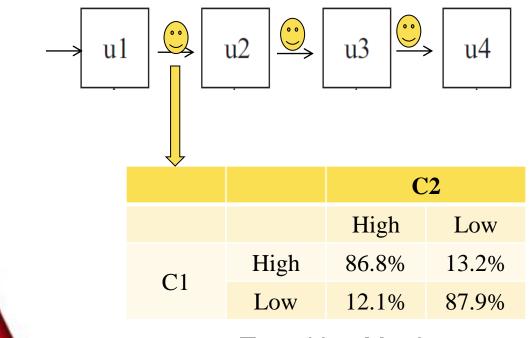
- Inspection of the data
 - Change from time 1 to time 2

		Time 2	
		High	Low
Time 1	High	155	35
	Low	11	148

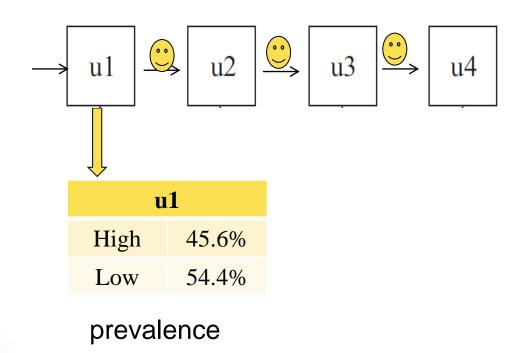
We could check from time 2 to time 3, and from time 3 to time 4, too.


• All the patterns

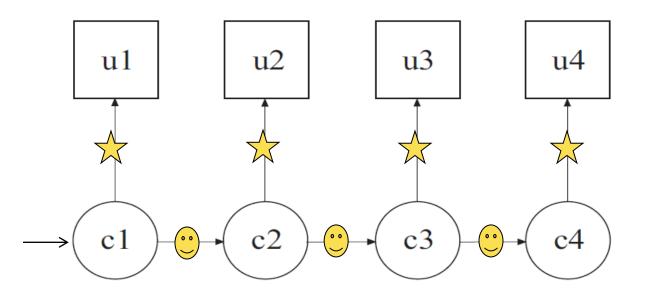
time 1	time 2	time 3	time 4	Frequency
High	High	High	High	141
High	High	High	Low	5
High	High	Low	High	6
High	High	Low	Low	3
High	Low	High	High	7
High	Low	High	Low	5
High	Low	Low	High	14
High	Low	Low	Low	9
Low	High	High	High	6
Low	High	Low	High	1
Low	High	Low	Low	4
Low	Low	High	High	6
Low	Low	High	Low	5
Low	Low	Low	High	13
Low	Low	Low	Low	124


- Two models are fitted for illustration purpose
 - Model 1: Manifest Markov Model
 - Model 2: Latent Markov Model
 - We could fit more models...

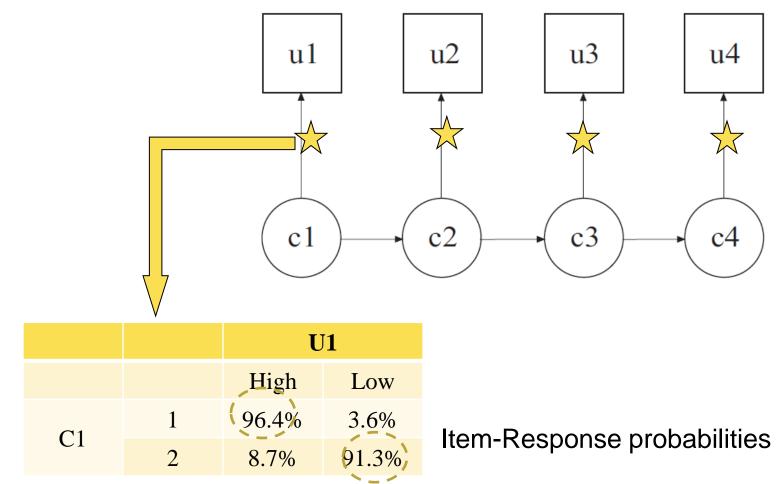
- Model 1: Manifest Markov Model
 - There is no measurement error, or the measure is perfect
 - Stationary, this is not necessary

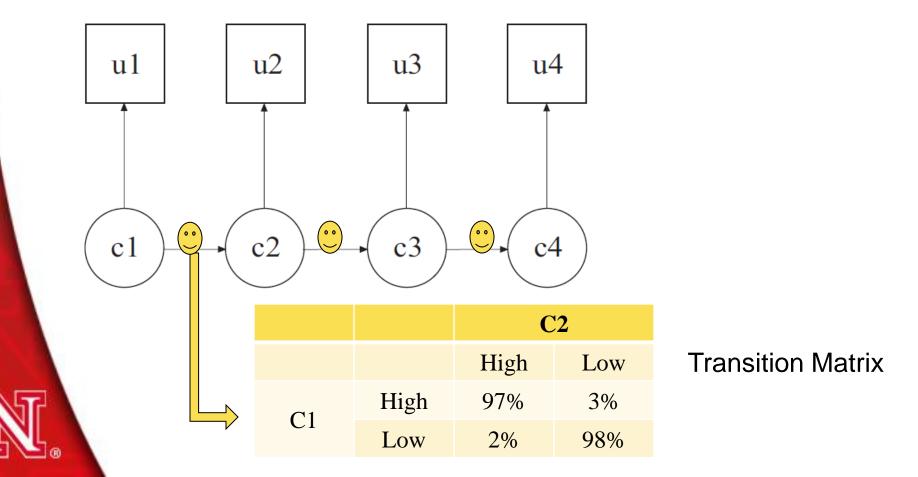


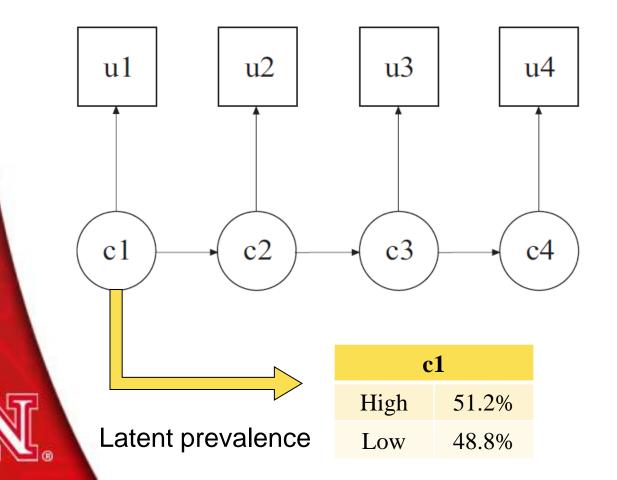
- Results
- Model 1: Manifest Markov Model-Transition matrix



Transition Matrix


- Results
- Model 1: Manifest Markov Model--prevalence


- Model 2: Latent Markov model
 - Measure is not perfect
 - The transition matrixes are fixed to be equal across time points;
 - The item-response probabilities are fixed to be equal at different time points, too.
 - It is not necessary to do so though.


- Results
 - Model 2: Latent Markov Model

- Results
 - Model 2: Latent Markov Model

- Results
 - Model 2: Latent Markov Model

Discussion - Summary

- Wrap-up
 - LTA provides latent class membership as well as its transition over time
 - Parameters in LTA were estimated by MLE based on the response patterns
 - Its results can be interpreted in various ways
- LTA can be extended with
 - Multiple group analysis
 - Analysis with covariates

Discussion - Issues

- Issues in LTA
 - Weak in or lack of model comparison tools
 - Sample size (the larger, the better)

 - N=469 for LCA

 - N=1,265 for LTA
 - N=2,061 for LTA
 - N=2,065 for LCA
 - N=2,087 for LCA
 - N=2,937 for LTA
 - N=13,840 for LCA

References

- 1. Agresti, A. (1990). *Categorical data analysis*. Wiley, NY.
- 2. Collins, L. M. & Lanza, S. T. (2010). *Latent class and latent transition analysis with applications in the social, behavioral, and health sciences.* John Wiley & Sons, Inc., Hoboken, NJ.
- 3. Kaplan, D. (2008). An overview of Markov chain methods for the study of stage-sequential developmental processes. *Developmental Psychology*, *44* (2), 457-467.
- 4. Konishi, C., Hymel, S., Zumbo, B.D., Li, Z., Taki, M., Slee, P., Pepler, D., Sim, H., Craig, W., Swearer, S., and Kwak, K. (2009). Investigating the comparability of a self-report measure of childhood bullying across countries. *Canadian Journal of School Psychology*, *24*, 82-93.
- 5. Langeheine, R., & Van de Pol, F. (2002). Latent markov chains. In J. A. Hagenaars & A. L. McCutcheon (Eds.), *Applied latent class analysis* (pp. 304{341). New York: Cambridge University Press.
- 6. Marsh, H. W. (1988). Self Description Questionnaire: A threoretical and empirical basis for the measurement of multiple dimensions of preadolescent self-concept: A test manual and a research monograph. Psychological Corporation, San Antonia, Texas.
- Mooijaart, A. (1998). Log-linear and Markov modeling of categorical longitudinal data. In C. C. J. H. Bijleveld & L. J. T. Van der Kamp (Eds.), *Longitudinal data analysis: Designs, models, and methods* (pp. 318{370). Newbury Park, CA: Sage.
- 8. Mooijaart, A., & van Montfort, K. (2007). Latent markov models for categorical variables and time-dependent covariates. In K. van Montfort, J. Oud, & A. Satorra (Eds.), *Longitudinal models in the behavioral and related sciences* (pp. 1{17). Mahwah, NJ: Lawrence Erlbaum.
- 9. PROC LCA & PROC LTA (Version 1.2.7) [Software]. (2011). University Park: The Methodology Center, Penn State. Retrieved from <u>http://methodology.psu.edu</u>
- 10. Van de Pol, F., & de Leeuw, J. (1986). A latent markov model to correct for measurement error. *Sociological Methods and Research, 15*, 118-141.

Thank you!

For more information, please contact:

Ji Hoon Ryoo Chaorong Wu (<u>wuchaorong@gmail.com</u>)

(jryoo2@unl.edu) Carina McCormick (mccormick@huskers.unl.edu)

Syntaxes are available at http://quantitativemethods.wordpress.com

