Assessing Implementation Fidelity and Achieved Relative Strength in RCTs: Concepts and Methods

David S. Cordray Vanderbilt University Presentation The Nebraska Center for Research on Children, Youth, Families and School University of Nebraska Lincoln Nebraska April 19, 2010

Overview

- Research Context and Definitions
- A 4-step approach to assessment and analysis of implementation fidelity (IF) and achieved relative strength (ARS):
 - Model(s)-based
 - Quality Measures of Core Causal Components
 - Creating Indices
 - Integrating implementation assessments with models of effects

Distinguishing Implementation Assessment from the Assessment of Implementation Fidelity

- Two ends on a continuum of intervention implementation/fidelity:
- A *purely* descriptive model:
 - Answering the question "What transpired as the intervention was put in place (implemented).
- Based on *a priori* intervention model, with explicit expectations about implementation of program components:
 - Fidelity is the extent to which the realized intervention (t^{Tx}) is faithful to the *pre-stated* intervention model (T^{Tx})
 - Infidelity = $\mathbf{T}^{\mathsf{T}\mathsf{x}} \mathbf{t}^{\mathsf{T}\mathsf{x}}$
- Most implementation fidelity assessments involve descriptive and model-based approaches.

Dimensions Intervention Fidelity

 Aside from agreement at the extremes, little consensus on what is meant by the term "intervention fidelity".

Most frequent definitions:

- True Fidelity = Adherence or compliance:
 - Program components are delivered/used/received, as prescribed
 - With a stated criteria for success or full adherence
 - The specification of these criteria is relatively rare
- Intervention Exposure:
 - Amount of program content, processes, activities delivered/received by all participants (aka, receipt, responsiveness)
 - This notion is most prevalent

– Intervention Differentiation:

- The unique features of the intervention are distinguishable from other programs, including the control condition
- A unique application within RCTs

Linking Intervention Fidelity Assessment to Contemporary Models of Causality

Rubin's Causal Model:

- True causal effect of X is $(Y_i^{Tx} Y_i^{C})$
- RCT methodology is the best approximation to this true effect
- In RCTs, the difference between conditions, on average, is the causal effect
- Fidelity assessment within RCTs entails examining the difference between causal components in the intervention and control conditions.
- Differencing causal conditions can be characterized as <u>achieved relative strength</u> of the contrast.
 - Achieved Relative Strength (ARS) = $t^{Tx} t^{C}$
 - ARS is a default index of fidelity

Treatment Strength Outcome 100 .45 T^{Tx} \overline{Y}_{T} 90 .40 Infidelity $\overline{Y_t}$ 85 .35 t tx 80 .30 (85)-(70) = 15Achieved Relative 75 .25 *Strength* =.15 $\overline{\underline{Y}}_{v}$ 70 .20 ť "Infidelity" 65 TC .15 60 .10 $d = \frac{85 - 70}{30} = 0.50$ 55 .05 50 .00 $d = \frac{\overline{Y_t} - \overline{Y_c}}{sd_{pooled}}$ $d_{\text{with fidelity}} = \frac{\overline{Y}_T - \overline{Y}_C}{sd_{pooled}}$ $=\frac{90-65}{30}=0.83$ $d_{\rm with\ fidelity}$ d = 0.50

Expected Relative Strength = (0.40-0.15) = 0.25

Why is this Important?

- Statistical Conclusion validity
 - Unreliability of Treatment Implementation: Variations across participants in the delivery receipt of the causal variable (e.g., treatment). Increases error and reduces the size of the effect; decreases chances of detecting covariation.
- Resulting in a reduction in statistical power or the need for a larger study....

The Effects Structural Infidelity on Power

Influence of Infidelity on Study-size

If That Isn't Enough....

- Construct Validity:
 - Which is the cause? $(T^{Tx} T^{C})$ or $(t^{Tx} t^{C})$
 - **Poor implementation:** essential elements of the treatment are incompletely implemented.
 - **Contamination:** The essential elements of the treatment group are found in the control condition (to varying degrees).
 - Pre-existing similarities between T and C on intervention components.

External validity – generalization is about (t^{Tx} - t^C)

 This difference needs to be known for proper generalization and future specification of the intervention components

So what is the cause? ... The achieved relative difference in conditions across

Some Sources and Types of Infidelity

- If delivery or receipt could be dichotomized (yes or no):
 - Simple fidelity involves compliers;
 - Simple infidelity involves "No shows" and crossovers.
- Structural flaws in implementing the intervention:
 - Missing or incomplete resources, processes
 - External constraints (e.g. snow days)
- Incomplete delivery of core intervention components
 - Implementer failures or incomplete delivery

A Tutoring Program: Variation in Exposure

4-5 tutoring sessions per week, 25 minutes each, 11weeks

Expectations: 44-55 sessions

Variation in Exposure: Tutor Effects

The other fidelity question: *How faithful to the tutoring model is each tutor*?

In Practice....

- Identify core components in the intervention group
 - e.g., via a Model of Change
- Establish bench marks (if possible) for T^{TX} and T^C
- Measure core components to derive t^{Tx} and t^{C}
 - e.g., via a "Logic model" based on Model of Change
- Measurement (deriving indicators)
- Converted to Achieved Relative Strength and implementation fidelity scales
- Incorporated into the analysis of effects

What do we measure?

What are the options?

(1) Essential or core components (activities, processes);

(2) Necessary, but not unique, activities, processes and structures (supporting the essential components of T); and

(3) Ordinary features of the setting (shared with the control group)

• Focus on 1 and 2.

Specifying Intervention Models

- Simple version of the question: What was intended?
- Interventions are generally multicomponent, sequences of actions
- Mature-enough interventions are specifiable as:
 - Conceptual model of change
 - Intervention-specific model
 - Context-specific model

An Illustrative Simple Model of Change

From: Knowlton & Phillips, 2009, The Logic Model Guidebook: Better Strategies for Great Results, p.7

The Logic Model and Conceptual Model

Figure 1.2 Community Leadership Academy (CLA) Program Logic Model

From: Knowlton & Phillips, 2009, The Logic Model Guidebook: Better Strategies for Great Results, p.9

The Generic Logic Model

Figure 2. How to Read a Logic Model.

From: W.T. Kellogg Foundation, 2004

The Other Half of the Picture

- Fidelity assessment within RCTs should examine the difference between causal components in the intervention and control conditions.
- Differencing causal conditions can be characterized as *achieved relative strength* of the contrast.
 - Achieved Relative Strength (ARS) = $t^{Tx} t^{C}$
 - ARS is a default index of fidelity

Quality Measures of Core Components

- Measures of resources, activities, outputs
- Range from simple counts to sophisticated scaling of constructs
- Generally involves multiple methods
- Multiple indicators for each major component/activity
- Reliable scales (3-4 items per sub-scale)

Core Reading Components for Local Reading First Programs

Design and Implementation of Research-Based Reading Programs

Use of research-based reading programs, instructional materials, and assessment, as articulated in the LEA/school application

Teacher professional development in the use of materials and instructional approaches 1)Teacher use of instructional strategies and content based on five essential components of reading instruction

2) Use of assessments to diagnose student needs and measure progress

3) Classroom organization and supplemental services and materials that support five essential components

After Gamse et al. 2008

From Major Components to Indicators...

Reading First Implementation: Specifying Components and Operationalization

Components	Sub-components	Facets	Indicators (I/F)
Reading	Instructional Time	2	2 (1)
Instruction	Instructional Materials	4	12 (3)
	Instructional Activities /Strategies	8	28 (3.5)
Support for	Intervention Services	3	12 (4)
Struggling Readers (SR)	Supports for Struggling Readers	2	16 (8)
	Supports for ELL/SPED	2	5 (2.5)
Assessment	Selection/Interpretation	5	12 (2.4)
	Types of Assessment	3	9 (3)
	Use by Teachers	1	7 (7)
Professional	Improved Reading Instruction	11	67 (6.1)
development			
4	10	41	170 (4)

Adapted from Moss et al. 2008

Reading First Implementation: Some Results

Components Sub-		Performance Levels		ARSI (U3)
	components	RF	Non-RF	
Reading Instruction	Instructional Time (minutes)	101	78	0.33 (63%)
	Support	79%	58%	0.50 (69%)
Struggling Readers	More Tx, Time, Supplemental Service	83%	74%	0.20 (58%)
Professional Development	Hours of PD	41.5	17.6	0.42 (66%)
	Five reading dimensions	86%	62%	0.55 (71%)
Assessment	Grouping, progress, needs	84%	71%	0.32 (63%)
				0.39 (65%)

Adapted from Moss et al. 2008

Analyzing Variation in Implementation

Indexing Cause-Effect Linkage

- Analysis Type 1:
 - Congruity of Cause-Effect in ITT analyses
 - Effect = Average difference on outcomes \rightarrow ES
 - Cause = Average difference in causal components → ARS (Achieved Relative Strength)
 - Descriptive reporting of each, separately
- Analysis Type 2:
 - Variation in implementation fidelity linked to variation in outcomes
 - Effect = outcomes
 - Cause= covariates (from ARSI)

Common Cause-Effect Scenarios

	The Effect	Effect		
The Cause	Low	High		
Low	Low/Low = Cause-Effect Congruity	Low/High = ????		
High	High/Low = Dampening Process ????	High/High = Cause-Effect Congruity		

Cause-Effect Congruity: High/High Example

- Fantuzzo, King & Heller (1992) studied the effects of reciprocal peer tutoring on mathematics and school adjustment.
 - 2 X 2 factorial design crossing levels of structured peer tutoring and group reward
 - 45 min. 2-3 per week; 60-90 sessions
- Fidelity assessments:
 - Observations (via checklist) of students and staff, rated the adherence of group members to scripted features of each condition;
 - 50% random checks of sessions
 - Mid-year, knowledge tests to index the level of understanding of students about the intervention components in each of the four conditions.

Fantuzzo et al. Continued

- Fidelity results:
 - Adherence (via observations):
 - 90-100% across conditions,
 - 95% overall
 - Student understanding (via 15 item test):
 - 82% SD=11% (range 47-100%); ANOVA=ns
 - Reward+structure condition: 84% Control: 86%
- Effects on mathematics computation: ES= (7.7-5.0)/1.71 = 1.58
- Congruity=High/High; no additional analyses needed

Exposure and Achieved Relative Strength

- Fantuzzo et al. example is:
 - Relatively rare;
 - Incorporates intervention differentiation, yielding fidelity indices for all conditions.
- More commonly, intervention exposure is assessed:
 - Yielding scales of the degree to which individuals experience the intervention components in both conditions
 - The achieved relative strength index is used for establishing the differences between conditions on causal components

Indexing Fidelity as Achieved Relative Strength

Intervention Strength = Treatment – Control

Achieved Relative Strength (ARS) Index

$$ARS Index = \frac{\mathbf{t}^{\mathrm{Tx}} - \mathbf{t}^{\mathrm{C}}}{S_{\mathrm{T}}}$$

- Standardized difference in fidelity index across Tx and C
- Based on Hedges' g (Hedges, 2007)
- Corrected for clustering in the classroom

Average ARS Index

A Partial Example of the Meaning of ARSI

Randomized Group Assignment Di In

Professional Development

Differentiated Instruction

Improved Student Outcomes

Very Large Group Difference, Limited Overlap Between Conditions

	70 Control	70 1 1 1	ention	
	60	60 0 0 0 1 1 1 1 2 5	67777899999	
	50	50 4 5 6 7 7 7 7 7 8	889	
Hours of Professional	40 0 1	40 7 9		
Development	30 0001222478889	30		
	20 0 1 4 4 4 5 6 6 6 6 7 7 7 7 7 7 9	20		
	10 2 3 8 9	10		
	00	00		
	70 1 1 1			
Hours of Professional Development	60 0 0 0 1 1 1 1 2 5 6 7 7 7 78 9 9 9 9	Mean=61.8 SD=6.14		
	50 4 5 6 7 7 7 7 7 8 8 8 9			
	40 0 9		= (61.8-28.2)/6.61	
	30 0001222478889		=5.08	
	20 0 1 4 4 4 5 6 6 6 6 7 7 7 7 7 7 9	Mean= 28.2	U3= 99%	
	10 2 3 8 9	SD=7.04		
	00			

Cohen's U3 Index: Very Large Group Separation

Small Group Differences, Substantial Overlap

	70 Control	70 Interve	ention		
Hours of Professional Development	60	60			
	50	50			
	40 0 1	40 0 0 0			
	30 0001222478889	30 0 0 0 0 1 4 5 6 6 6 6 7 8 8 8 8			
	20 0 1 4 4 4 5 6 6 6 6 7 7 7 7 7 7 9	203456666	20 3 4 5 6 6 6 6 7 7 7 8 9 9 9 10 6 8		
	10 2 3 8 9	10 <mark>6 8</mark>			
	00	00			
	70				
	60	Mean=30.8			
	50	SD=6.14			
Hours of Professional Development	40 0 0 0		= (30.8-28.2)/6.61		
	30 00001 02 12 42 54 67 68 68 68 79 8 8 8 8		=0.39		
	20 0 4 5 6 6 6 6 6 6 6 8 9 9 9 7 7 9	Mean= <mark>28.2</mark>	U3= 66%		
	10 6 8 8 9	SD=7.04			
	00				

Cohen's U3: Little Group Separation Control Intervention Mean Mean

High/High and Low/Low Congruity

Hulleman & Cordray (2009) examined the results of a motivation intervention in the lab and in classrooms, not surprisingly.....

Measure	Lab	Classroom		
Perceived Utility Value	g = 0.45 p = 0.03	g = 0.05 p = 0.67		
Achieved Relative Strength:				
Binary	0.65	0.15		

Calculating ARSI When There Are Multiple Components

Weighted Achieved Relative Strength

$$ARSI_{PD} = \frac{\overline{X}^{t^{E}} - \overline{X}^{t^{C}}}{Sd} = \frac{3 - 2.5}{2} = 0.25$$

$$ARSI_{Assess} = \frac{6 - 3.5}{3} = 0.83$$

$$ARSI_{DI} = \frac{7 - 4}{3.5} = 0.86$$

$$ARSI_{Weighted} = \sum w_{j}ARSI_{j} = .25(.25) + .33(.83) + .42(.86) = 0.69$$

$$U3 = 76\%$$

Converting ARS into a Composite Fidelity Index Composite Fidelity = $\frac{ARSI}{RSI \text{ wgt}} = \frac{0.69}{1.94} = .36$ Where:

$$RSI = \sum w_{j}(RSI_{j})$$

$$RSI_{PD} = \frac{\overline{X}^{T^{E}} - \overline{X}^{T^{C}}}{Sd} = \frac{6-2}{2} = 2.0$$

$$RSI_{Assess} = \frac{8-2.5}{3} = 1.83$$

$$RSI_{DI} = \frac{10-3}{3.5} = 2.0$$

$$RSI_{Weighted} = .25(2) + .33(1.83) + .42(2) = 1.94 \qquad U3 = 97\%$$

Main points....

- Analysis of intervention fidelity and achieve relative strength is a natural counterpart to estimating ESs in ITT studies.
- They provide an interpretive framework for explaining outcome effects.
- When ES and ARSI are discordant, serve as the basis for additional analysis.
- Next section focuses on analysis of variation

Analysis II

Linking Variation in Treatment Receipt/Delivery to Outcomes

Analyzing Variation in Treatment Receipt/Delivery Within Groups: Fidelity Indicators

- Rather than relying on the 0,1 coding of groups, fidelity indicators replace the group variable.
- New question being answered: What is the effect of treatment on those receiving treatment or TOT.
- Value of fidelity indices will depend on their strength of the relationship with the outcome;
- The greater the group difference, on average, the less informative fidelity indicators will be; and
- High predictability requires reliable indices

Using Group, Fidelity Indicators, or Both: A Simple Example

Randomized Group Assignment **Fidelity** Indicator= Hours of Professional Development **Outcome=** Differentiated Instruction **Improved Student Outcomes**

The "Value Added" of Implementation Fidelity/ARS Data

Group Separation	U3	Predicting Differen	uction	
		R ² Group	R ² _{Hours Pro}	Development
Small	0.39	0.01	0.293*	(0.28)
Large	2.36	0.215*	0.437*	(0.22)
Very Large	5.08	0.401*	0.549*	(0.15)

EXAMPLE : Intent-to-treat (ITT) and Treatment- on-Treated (TOT): An Example

- Justice, Mashburn, Pence, & Wiggins (2008) examined:
 - Language-Focused Curriculum (LFC) in 14 classes;
 - Classes randomly assigned to LFC and control;
 - Core component of LFC is the use of language stimulation techniques (e.g., open questions, recasts, models); and
 - Outcome → Growth in expressive language examined (fall to spring)

Justice et al. Continued

- Implementation fidelity assessed:
 - 3 times using 2 hour observation (45 item check list)
 50 min. video sample; and 40 weekly lesson plans.
- Fidelity score =
 - weighted sum of frequency of the use of 7 language stimulation techniques (range 0-21);
- Fidelity = score/21; averaged over observations
- Results:
 - LST teachers average fidelity = 0.57 (range 0.17-0.79)
 - Control teachers average fidelity = 0.32 (range 0.17-0.56)
 - ANOVA F=11.83, p = .005; d = ARSI = 1.71

Justice et al. Continued

Level 1

 $Y_{ij} = \beta_{oo} + \beta_{01}(\text{Fall Score}) + \beta_{02}(\text{Gender}) + \beta_{03}(\text{SES}) + \beta_{04}(\text{Attendance}) + r_{ij}$ **Level 2 \rightarrow ITT \beta_{00} = \gamma_{00} + \gamma_{01}(LFC) + u_{0j} Level 2 \rightarrow TOT** $\beta_{00} = \gamma_{00} + \gamma_{01}(LST) + u_{0j}$

Justice et al. Results

Model	Reading Outcome	
	В	SE
Level 1		
Intercept	.139	
Fall Language scores	0.29**	0.06
Gender	-0.13	1.10
SES	0.10**	0.03
Attendance	0.19	0.24
Level 2 (ITT)		
Treatment (1)/Control (0)	0.64	1.43
Level 2 (TOT)		
Average observation	-0.03	0.04

What can we conclude about the ITT and TOT analyses?

- Few teachers exhibited high levels of LST use (core component of LFC)
- Fidelity overall = 0.45
- They argue, the large group difference (ARSI=1.71 for fidelity = 0.57 vs. 0.32) may not have been sufficient because the dosage (0.57) was so far below what is needed to affect language development.
- Other possibilities include:
 - Reliability of the scaling?
 - Use of average when trend in observations showed improvement?
 - Coverage of central constructs?
 - Functional form of fidelity-outcome linkage?

Hierarchy of Approaches

ITT and LATE

- ITT (Intent-to-treat) estimates (e.g., ES) plus:
 - an index of true fidelity:
 - ES=.50 Fidelity = 96%
 - an index of Achieved Relative Strength (ARS)
 - The Assign \rightarrow Hours of Professional Development example
- LATE (Local Average Treatment Effect):
 - If treatment receipt/delivery can be meaningfully dichotomized and there is experimentally induced receipt or non-receipt of treatment:
 - adjust ITT estimate by T and C treatment receipt rates.
 - Simple model can be extended to an Instrumental Variable Analysis (see Bloom's 2005 book).
- ITT retains causal status; LATE can approximate causal statements.

Treatment-on-Treated

- TOT (Treatment-on-Treated).
 - Two-level linear production function, modeling the effects of implementation factors in Tx and modeling factors affecting C in separate Level 2 equations.
 - Regression-based model, exchanging implementation fidelity scales for treatment exposure variable.
 - Simple: ITT estimate adjusted for compliance rate in Tx, no randomization
- Subject to mis-specification
- Useful in identifying potential differentiated effects and basis for new studies.

Descriptive Analyses

- Descriptive analyses:
 - Dose-response relationship
 - Partition intervention sites into "high" and "low" implementation fidelity:
 - ATOD prevention studies, the ES^{HIGH} =0.13 to 0.18 ES^{LOW} =0.00 to 0.03

Key Points and Issues

- Fidelity assessment serves two roles:
 - Average causal difference between conditions; and
 - Using fidelity measures to assess the effects of variation in implementation on outcomes.
- Degree of fidelity and Achieved Relative Strength provide fuller picture of the results
- Modeling fidelity depends on the assignment model
- Most applications, fidelity is just another Level 2 or 3 variable.
- Uncertainty and the need for alternative specifications:
 - Measure of fidelity
 - Index of achieved relative strength
 - Fidelity-outcome model specification (linear, non-linear)
- Adaptation-fidelity tension

Additional Examples

EXAMPLE 2: An Elaborated Model: The Welfare to Work Experiments

- Howard Bloom and his colleagues (2005) assessed the effects of employment training on earnings in a classic set of welfare to work experiments.
- They modeled the effects of site-level implementation and program variations, controlling for client characteristics and unique aspects of site-level control conditions.
- This approach is commonly referred to as a production function: unfortunately these types of examples are very rare (but a great model for the future).

Bloom et al. Model Specification

Some Bloom et al. Results

Cluster	Program Characteristic	B (\$)	Adj B (\$)
Implementation	Emphasis on quick job entry	720***	720***
	Emphasis on personal attention	428***	428***
	Closeness of monitoring	-197	- 197
	Staff caseload size	- 4***	- 268***
	Staff disagreement	124	124
	Staff-supervisory disagreement	-159*	- 159*
Activities	Basic education	- 16**	- 208**
	Job-search assistance	1	12
	Vocational training	7	71
Econ Environ	Unemployment rate	- 94***	- 291***

EXAMPLE 3: Analyzing the Reasons for Implementation Failure

- Hulleman & Cordray (2009) examined the sources of implementation failure.
- Focused on the classroom results where there were no motivation effects.
- Student behaviors were nested within teachers:
 - Teacher dosage
 - Frequency of student exposure
- Student and teacher behaviors were used to predict treatment fidelity (i.e., quality of responsiveness/ exposure).

Sources of Infidelity: Multi-level Analyses

Part I: Baseline Analyses

- Identified the amount of residual variability in fidelity due to students and teachers.
 - Due to missing data, we estimated a 2-level model (153 students, 6 teachers)

Student: $Y_{ij} = b_{0j} + b_{1j}(\text{TREATMENT})_{ij} + r_{ij}$, Teacher: $b_{0j} = \gamma_{00} + u_{0j}$, $b_{1j} = \gamma_{10} + u_{10j}$

Sources of Infidelity: Multi-level Analyses

Part II: Explanatory Analyses

 Predicted residual variability in fidelity (quality of responsiveness) with frequency of responsiveness and teacher dosage

Student:
$$Y_{ij} = b_{0j} + b_1 (TREATMENT)_{ij} + b_2 (RESPONSE FREQUENCY)_{ij} + r_{ij}$$

Teacher:
$$b_{0j} = \gamma_{00} + u_{0j}$$

 $b_{1j} = \gamma_{10} + \mathbf{b_{10}}(\text{TEACHER DOSAGE})_j + u_{10j}$
 $b_{2j} = \gamma_{20} + \mathbf{b_{20}}(\text{TEACHER DOSAGE})_j + u_{20j}$

Sources of Infidelity: Multi-level Analyses

	Baseline Model		Explanatory Model	
Variance Component	Residual Variance	% of Total	Variance	% Reduction
Level 1 (Student)	0.15437*	52	0.15346*	< 1
Level 2 (Teacher)	0.13971*	48	0.04924	65*
Total	0.29408		0.20270	

* *p* < .001.

Case Summary

- The motivational intervention was more effective in the lab (g = 0.45) than field (g = 0.05).
- Using 3 indices of fidelity and, in turn, achieved relative treatment strength, revealed that:
 - Classroom fidelity < Lab fidelity</p>
 - Achieved relative strength was about 1 SD less in the classroom than the laboratory
- Differences in achieved relative strength = differences motivational outcome, especially in the lab.
- Sources of fidelity: teacher (not student) factors

And, finally....