The role of the *lexicon* in early identification and intervention for language and reading disabilities

Tiffany P. Hogan
University of Nebraska – Lincoln
Special Education and Communication Disorders

Research Goal

Elucidate causal mechanisms underpinning language and reading disabilities

Improve early identification and intervention for children at risk for language and reading disabilities

Research Goal

Elucidate causal mechanisms underpinning language and reading disabilities

Improve early <u>identification</u> and intervention for children at risk for language and <u>reading disabilities</u>

■ The lexicon

Big Issue #1

Poor readers are not identified until they begin learning how to read

Big Issue #1

- Poor readers are not identified until they begin learning how to read
 - Reading tests don't identify poor readers until 1st grade and beyond

Solution: Measure precursors to reading

Big Issue #2

- Precursors to reading
 - Phonological awareness & vocabulary
 - Good sensitivity
 - Poor specificity (Heath & Hogben, 2004)
- Solution:
 - Use theory and data to create better tests of precursors

Framework for understanding components of reading

(Catts, Hogan, & Adlof, 2005; Gough & Tunmer, 1986; Hoover & Gough, 1990)

Reading Comprehension

(Catts, Hogan, & Adlof, 2005; Gough & Tunmer, 1986; Hoover & Gough, 1990)

Reading Comprehension

Word Recognition

(Catts, Hogan, & Adlof, 2005; Gough & Tunmer, 1986; Hoover & Gough, 1990)

Reading Comprehension

Word Recognition

Listening

Comprehension

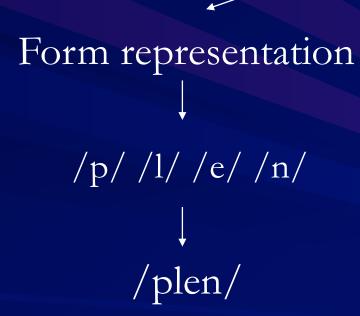
Research Goal

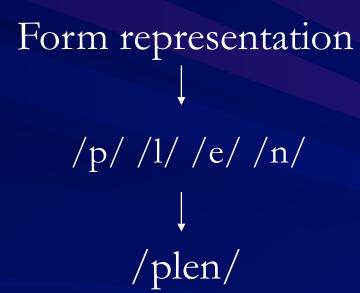
- To improve early identification of reading impairment...
- Need to examine precursors to
 - Word recognition
 - Listening Comprehension
- Use theory to create better tests of these precursors
 - Good sensitivity and good specificity

Could the *lexicon* be the key to early identification and intervention for <u>all</u> poor readers?

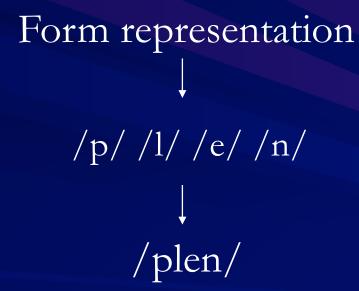
Reading

Lexicon

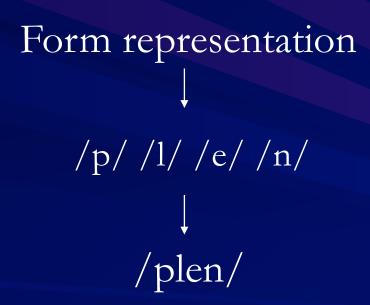

Word Recognition Listening


Comprehension

Form representation


Form representation

/p/ /l/ /e/ /n/


Semantic representation

Semantic representation

Flying object

Carries people and cargo

Semantic representation

Flying object

Carries people and cargo

The Simple View of Reading & the Lexicon

Reading Form Representation

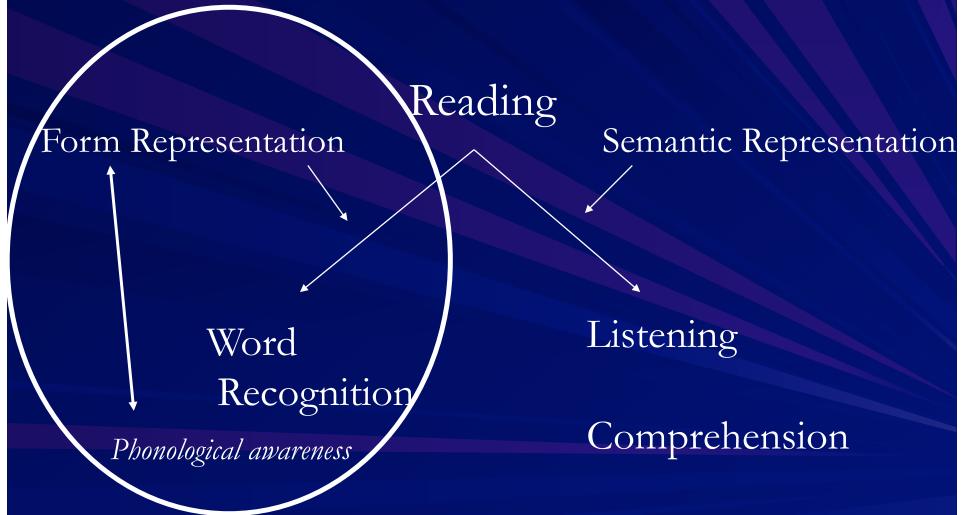
Word Recognition Listening

Comprehension

The Simple View of Reading & the Lexicon

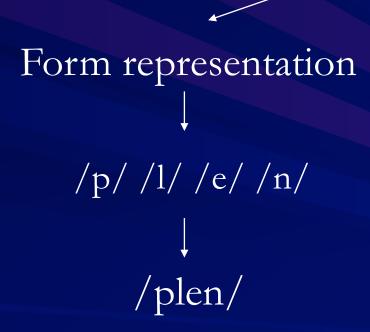
Reading Semantic Representation Form Representation Listening Word Recognition Comprehension

Advantages to the Lexicon and Early ID


The lexicon

- Maps to Simple View components
- Develops early and is easy to measure
- Theories related to the lexicon and...
 - Word recognition
 - Phonological awareness
 - Listening comprehension
 - Vocabulary knowledge

Form representations and phonological awareness performance


Funded by the International Dyslexia Association (General Grant; PI: Hogan)

Tests of Phonological Awareness

- Tests of phonological awareness have been used to identify children who will be at risk for reading impairment
 - Example test: phoneme deletion
- Over-identify good readers as having poor phonological awareness (Heath & Hogben, 2004)
 - Poor specificity
- Using data-driven, theory-based selection of phonological awareness test words is likely to improve early detection of reading impairment

Sound-to-be-deleted

Neighborhood density

Sound Sonority

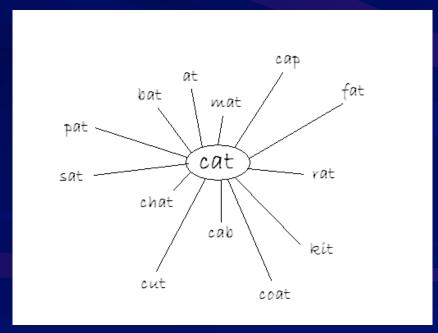
- Sonority: resonant property that somewhat corresponds to its degree of constriction during production (Chin, 1996)
- Highly sonorous: more vowel-like
- Least sonorous: less vowel-like

Sonority Hierarchy

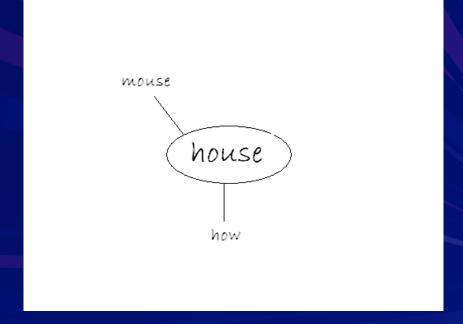
- Least sonorous
 - voiceless stops/affricates /p/
 - voiced stops/affricates /d/
 - voiceless fricatives /f/
 - voiced fricatives /v/
 - Nasal /m/
 - Liquids /l/
 - Glides /w/
 - Vowels /a/
- Most sonorous

Sonority and Phonological Awareness

- The higher the sonority of the sound, the more difficult it is to delete that sound from a word during a phonological awareness task (Yavas & Gogate, 1999)
- Example: wall vs. call


Focus on individual sounds is in line with the phonological deficit hypothesis

(Catts 1986, 1989; Elbro, 1996)


Neighborhood Density

Neighbors differ by the subtraction, addition, or substitution of 1 phoneme

Dense

Sparse

Neighborhood Density and Phonological Awareness

- Because words from dense neighborhoods have many neighbors, they contain more phonemic detail in order to differentiate one from another <u>Example</u>
- Deleting a sound from a word is easier when the word contains more phonemic detail

 (Hogan, Bowles, Catts, Storkel, 2010; Metsala, 1999)
- Focus on word as integrated whole is in line with the Lexical Restructuring Model (Metsala & Walley, 1998)

This study examined the impact of the sound-to-be-deleted and neighborhood density simultaneously

Research Questions

1: Do phonological awareness deletion test words differing in the sonority of the sound-to-be-deleted differ in accuracy?

Prediction:

Yes, words with <u>low</u> <u>sonority</u> <u>sounds-to-be-deleted</u> will be <u>more accurate</u> compared to words with high sonority sounds-to-be deleted.

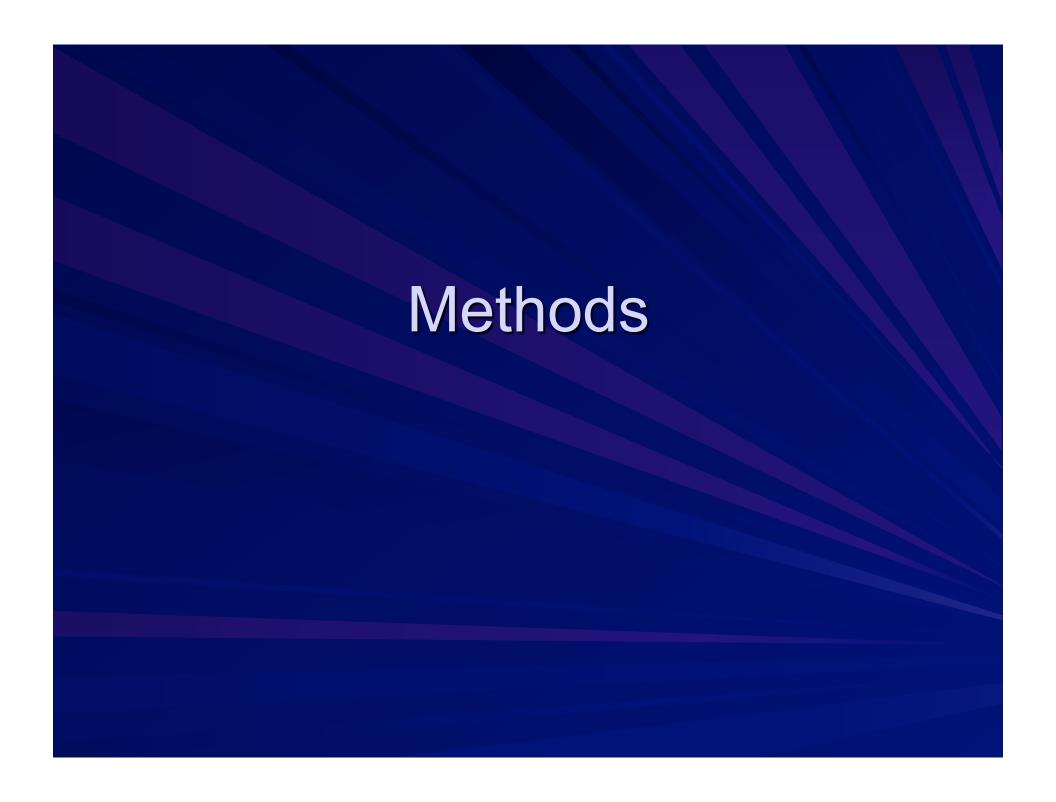
Research Questions

2: Do phonological awareness deletion test words differing in neighborhood density differ in accuracy?

Prediction:

Yes, words from <u>dense neighborhoods</u> will be more accuracy compared to words from sparse neighborhoods

Research Questions


3: Are their interactions between the sonority of the sound-to-be-deleted and neighborhood density?

Prediction:

Yes

words from dense neighborhoods will be most accurate regardless of the sonority of the sound-to-be-deleted

words from sparse neighborhoods with low sonority sounds-to-be-deleted will be more accurate than words from sparse neighborhoods with high sonority sounds-to-be-deleted

Participants

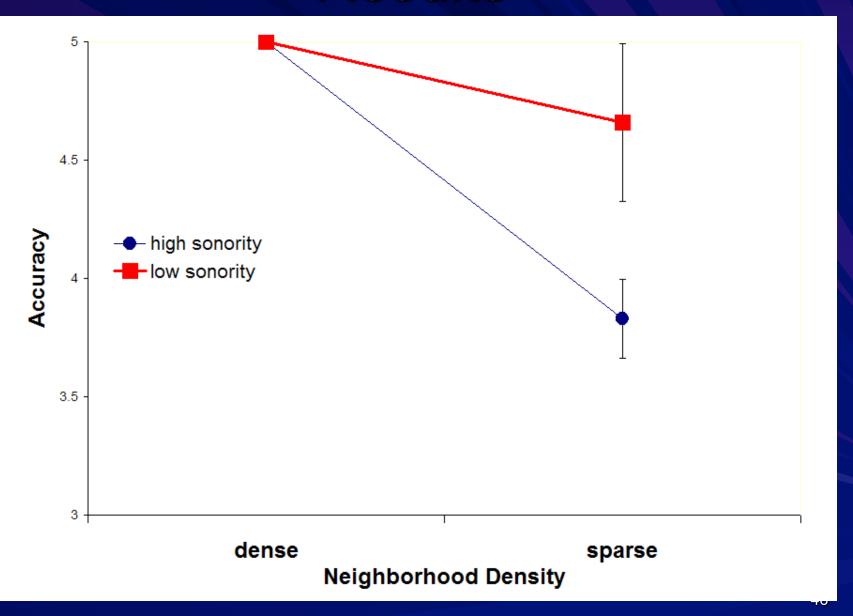
- Typically developing 5- & 6-year-olds (n = 13)
- Enrolled in kindergarten (M = 70 months, SD = 5)
- Middle to high socioeconomic status
- English only speakers
- No history of speech and/or language impairment
- Normal language skills
 - Expressive vocabulary (M=109, SD=16)
 - Receptive vocabulary (M=110, SD=14)
 - Nonverbal IQ (*M*=<u>118</u>, *SD*=17)
 - Phonological awareness (M=107, SD=16)
 - Literacy knowledge (M=111, SD=8)

Task

- Phoneme Awareness Deletion Task
 - CVC words initial sound deletion
 - Remaining sounds created a VC real word
 - Presented via computer
 - Picture support
- Why Phoneme Deletion Task?
 - Consistently best phonological awareness predictor of reading (e.g., Torgesen, Wagner, & Rashotte, 1994)
 - Neighborhood density is phoneme-based metric

Deletion Task

- 20 high frequency test words:
 - Varied by 1) sound sonority2) neighborhood density
 - **Most** sonorous **Dense** neighborhood density
 - Least sonorous Dense neighborhood density
 - **Most** sonorous **Sparse** neighborhood density
 - Least sonorous Sparse neighborhood density


Initial Deletion Task

Phoneme Deletion Video

Results

Implications for Findings

Supports both neighborhood density and sonority of sound-to-be-deleted as metrics for test word difficulty

- Just the beginning....
 - Big question for future work: Can these item characteristics be used to construct more sensitive tests of phoneme awareness for the detection of reading risk?
 - Can phonological and lexical knowledge be changed to result in better phoneme awareness and, in turn, reading abilities?

- Collecting more data to confirm trends and examine other influences on performance
 - Picture vs. no picture support
 - Real vs. nonwords
 - Initial vs. final sound deletion
 - Influence of letter knowledge
 - Task: Phoneme deletion vs. odd-one-out

- Examining the impact of form representations on phonological awareness performance
 - Across development

(NIH/NIDCD 9667; PI: Hogan)

- Determine the utility of lexicon-based processing measures for aligning with and predicting reading component dissociations in poor reader subgroups
 - Examine word learning in subgroups
 (NIH NICDC 9667; PI: Hogan)

Poor Reader Subgroups

(Catts, Hogan, & Fey, 2003)

Reading Comprehension

Word Recognition Dyslexia

Listening

Comprehension

Poor Reader Subgroups

(Catts, Hogan, & Fey, 2003)

Reading Comprehension

Word Recognition Listening

Comprehension

Comprehender

The Simple View of Reading & the Lexicon

Reading Semantic Representation Form Representation Listening Word Recognition Comprehension

Overall Summary

Study of the lexicon and its representations allows data-driven, theorybased inspection of reading component <u>precursors</u>

Ultimate result:

improvement of early identification and intervention for those at risk for reading disabilities

Other projects related to the lexicon & language and reading disabilities

- Word learning differences in poor reader subgroups (Gray, Hogan, Alt, Cowan, & Green, 2010)
 - Impact of working memory and bilingualism
- Orthographic influences on phonologically-based tasks (Hogan & Suddarth, 2010; Hogan, 2008)

Acknowledgements

Lab Members:

Link N Literacy Lab: Linking Language and Literacy University of Nebraska -Lincoln

L4 Lab: Language, Learning, Literacy, Lexicon University of Arizona

Collaborators:

Hugh Catts, Holly Storkel University of Kansas

Funding Sources:

National Institutes of Health (DC 06749; DC 09667, PI: Hogan),

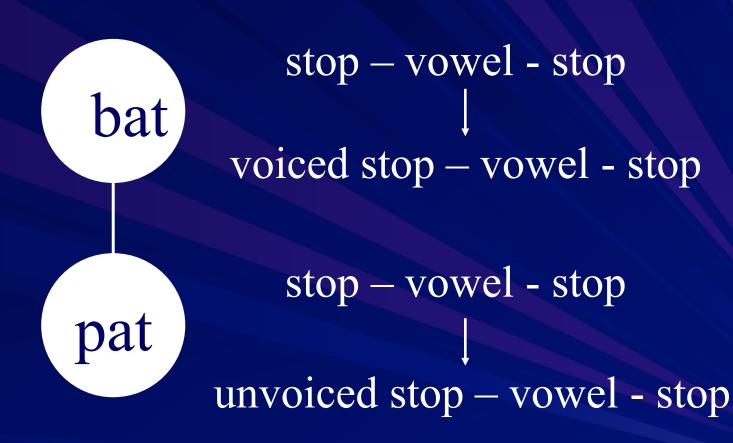
International Dyslexia Association (PI: Hogan),

Thank You

Tiffany P. Hogan thogan2@unl.edu www.unl.edu/linkNlit

stop – vowel - stop

stop – vowel - stop


stop – vowel - stop

stop – vowel - stop voiced stop – vowel - stop

pat

stop – vowel - stop

bat

voiced stop – vowel - stop

unvoiced stop – vowel - stop

<u>Back</u>