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Overview

1. Overview: Combining effect sizes

2. 2-levels of nesting: Independent effect sizes 
model

3. 3-levels of nesting: Hierarchical model
4. 3-levels + correlation: Multivariate model

5. Robust variance estimation

Lab: Estimating average effect sizes and 
heterogeneity



Combining effect 
sizes

An overview



Data that you 
need

In order to combine effect sizes, whether 
descriptively or inferentially, at a minimum you 
need two types of data:
• Effect size estimates
• Estimates of the precision of the effect size 

estimates (e.g., variance, standard errors)

The goal of meta-analysis is to pool these 
estimates across studies to estimate:
• An average effect size (a summary measure)
• The amount of heterogeneity in effect sizes
• Moderators of effect sizes



Remember: Forest plots



Remember: Forest plots

Estimate



Remember: Forest plots

Estimate

Precision



Know thy 
data

In order to combine estimates across studies – to 
meta-analyze – you need to choose an 
appropriate model.

Doing so requires knowledge of the data 
structure:
• Are there multiple effect sizes in some studies?
• Are the effect sizes measured on independent 

samples? Are they measured on the same 
people?
• Did the primary papers provide any information 

on how correlated the outcomes might be?



Independent 
effect sizes 
model

This is the simplest model. It requires each 
study to contribute a single ES. 

Examples:
• Every study contributes the results of an 

experiment, with a focus only on writing 
outcomes.
• Some studies include multiple measures, but 

these are averaged in the meta-analysis.



Study 1

Sample 1

ES 1

Study 2

Sample 2

ES 2

Example of Independent Effect Size Model Data Structure 



Multilevel 
effect sizes 
model

Each study contributes 1 or more effect size 
estimates.

Within each study, the effect sizes are independent. 

Examples:
• The same lab publishes several papers (on different 

samples of participants) using similar protocols
• A single paper reports the results of multiple 

experiments using similar protocols or samples 
(but not the same samples)



Example of Multilevel Effect Size Model Data Structure 

Study 1

Sample 1

ES 1

Sample 2

ES 2

Sample 3

ES 3

Study 2

Sample 4

ES 4

Sample 5

ES 5



Multivariate 
effect model

Each study contributes 1 or more effect size 
estimates.

Within each study, the effect sizes are correlated. 

Examples:

• An experiment assigns students to conditions, 
then measures outcomes using 2 different 
measures (e.g., accuracy, response time).

• An experiment has 2 treatment arms and 1 
control arm.



Study 1

Sample 1

ES 1 ES 2 ES 3

Study 2

Sample 2

ES 4 ES 5

Example of Multivariate Effect Model Data 
Structure #1



Study 1

Sample 1

ES 1 ES 2 ES 3

Sample 2

ES 4 ES 5

Study 3

Sample 3

ES 6 ES 7

Example of Multivariate Model Data 
Structure #2 



Choosing a model

It is imperative that you choose a model that properly accounts for your data structure. 

Reasons not to choose a model:
• It’s easy!
• It’s in my software and I don’t know how to use other software.
• I don’t know how to do anything else.
• Everyone else is doing it.
• Hedges or Cooper or Lipsey or someone else once said 30 years ago that this is ok.



Independent effect size 
model

Combining effect sizes



General model

Assume there are 𝑖 = 1,… , 𝑘 studies:
𝜃1, 𝜃2, … , 𝜃𝑘 effect size parameters (e.g. 𝛿, 𝜌, 𝜔)
𝑇1, 𝑇2, … , 𝑇! estimates of effect size (e.g. 𝑑, 𝑔, 𝑟, 𝑜)
𝑣1, 𝑣2, … , 𝑣! variances, where 

𝑣𝑖 = 𝑣𝑎𝑟(𝑇𝑖|𝜃𝑖) = 𝑆𝐸(𝑇𝑖|𝜃𝑖)2

Then we assume the model
𝑇𝑖 | 𝜃𝑖 ~ 𝑁(𝜃𝑖, 𝑣")

and that the variances 𝑣𝑖 are known.



General model

Assume there are 𝑖 = 1,… , 𝑘 studies:
𝜃1, 𝜃2, … , 𝜃𝑘 effect size parameters (e.g. 𝛿, 𝜌, 𝜔)
𝑇1, 𝑇2, … , 𝑇! estimates of effect size (e.g. 𝑑, 𝑔, 𝑟, 𝑜)
𝑣1, 𝑣2, … , 𝑣𝑘 variances, where 

𝑣𝑖 = 𝑣𝑎𝑟(𝑇𝑖|𝜃𝑖) = 𝑆𝐸(𝑇𝑖|𝜃𝑖)2

Then we assume the model
𝑇𝑖 | 𝜃𝑖 ~ 𝑁(𝜃𝑖, 𝑣")

and that the variances vi are known.

This is the 
standard error 
reported in 
study i

This is the 
effect size 
reported in 
study i

Assume: 
-Unbiased
-Variance known
-Estimate is normally 
distributed



Fixed effects

!

Assume that 𝜃1 = 𝜃2 = ⋯ = 𝜃𝑚 = 𝜃
This means all studies are estimating the same effect 
size, though estimates will vary.



Random 
effects

!

Assume instead that 𝜃𝑖 ~ 𝑁(𝜇, 𝜏2).
This means that instead of all studies estimating the same
true effect size, there is a distribution of true effects.



Random 
effects is 
the default

The fixed effects assumption is strong. In general, the 
random effects model is more appropriate.

In this model, we have:
• The average effect is 𝜇
• The standard deviation of the effect size 

distribution is 𝜏

Thus 95% of the true study-specific effect sizes are 
within the interval:

(𝜇 − 1.96𝜏, 𝜇 + 1.96𝜏)
This is called a 95% Prediction Interval (95PI).



Aside: Prediction vs Confidence Intervals

People often gets these confused. 

A 95% Confidence Interval for μ :
• is an interval estimate that contains the true μ in 95% of random samples. 
• is only about inferences regarding the average effect size.

A 95% Prediction Interval for θi: 
• is an interval estimate that contains 95% of the values of θi in the population.
• is about making inferences regarding the distribution of effect sizes across studies.



Estimation of the mean

We can model the data as:

𝑇𝑖 = 𝜃𝑖 + 𝜀! = 𝜇 + 𝜂𝑖 + 𝜀𝑖

And we want to estimate 𝜇. 

We could just estimate this with the sample mean.

Study Specific 
True Effect 

Study Specific 
Sampling Error



Data example Study Effect Size Estimate (d) SE(d) Estimate
1 0.20 0.04
2 1.4 0.98
3 0.17 0.10
4 0.18 0.07

The sample mean is:
(0.20+1.4+0.17+0.18)/4 
= 0.48 

But Study 2 is different.

Its estimate is large. 

More importantly, it isn’t very precise!

Should we really give 
each of these estimates 
equal weight?



Precision weighting (aka Inverse Variance 
Weighting)
The sample mean is not a very precise estimate of the population 
average. 

A more precise estimate gives:
• Greater weight to precise estimates (small standard errors)
• Smaller weight to imprecise estimates (large standard errors)

Formally, this is a weighted mean.



Estimate of the population mean

We can use the random effects estimator:

𝑇 = ∑&'(
) &&'&
∑&'(
) &&

Where
𝑤𝑖 = 1/(𝑣( + 𝜏2)

And we can show that:
• 𝐸(𝑇) = 𝜇

• 𝑆𝐸(𝑇) = )
∑&'(
) &&

We observe this 
in our data.

We estimate this.

This is the MVUE 
if the weights are 
exactly inverse-
variance.



Estimation of τ2

In the RE model, we assume that there is a distribution of ESs, with true variance 𝜏2. We 
need to estimate 𝜏2. 

There are many estimators available. These include:
• Method of Moments (MoM)
• Maximum Likelihood (ML)
• Restricted Maximum Likelihood (REML)

We suggest using REML.



Hypothesis Testing: Average effect size

Question: Is the average treatment effect non-zero in the population?
𝐻0: 𝜇 = 0 𝑣𝑠 𝐻𝑎: 𝜇 ≠ 0

Hedges (1982): 𝑡 = *
+,(*)

Reject H0 when |𝑡| > 1.96

Knapp & Hartung (2003): 𝑡 = *
/∗+,(*)

where 𝑎 = ∑!"#
$ 2!(*!3*)%

435
Reject H0 when 𝑡 > 𝑡.789,435

Default in most 
software, but not 
good

Available. Make it 
your default.



Hypothesis 
testing: 
Heterogeneity 

Question: Do true effect sizes vary across 
studies?

𝐻0: 𝜏2 = 0 𝑣𝑠 𝐻𝑎: 𝜏2 ≠ 0

Q-test: Q = ∑"#$! 𝑤"(𝑇" − 𝑇)%

Reject H0 if 𝑄 > 𝜒.'(,!*$%

Notes:
• This test does not have much power in 

small samples.
• Do not use this test to determine if you 

should use a FE or RE model.



Prediction 
Interval & 

Heterogeneity



Multilevel Model
Combining effect sizes



Hierarchical data

Now we have studies 𝑖 = 1,… , 𝑘. Each study has 
𝑗 = 1,… , 𝑘𝑗 effect size estimates.

𝜃𝑖𝑗 = parameter for ES j in study 𝑖 (e.g. 𝛿, 𝜌, 𝜔)
𝑇𝑖𝑗 = estimate of ES j in study 𝑖 (e.g. 𝑑, 𝑔, 𝑟, 𝑜)

𝑣𝑖𝑗 = variances of ES j in study 𝑖
𝑣𝑖𝑗 = 𝑣𝑎𝑟(𝑇𝑖𝑗|𝜃𝑖𝑗) = 𝑆𝐸(𝑇𝑖𝑗|𝜃𝑖𝑗)2

As before, we assume 𝑇𝑖𝑗 | 𝜃𝑖𝑗 ~ 𝑁(𝜃𝑖𝑗, 𝑣𝑖𝑗)
and we typically assume that the variances 𝑣𝑖𝑗 are 
known.



Hierarchical data

Now we have studies 𝑖 = 1,… , 𝑘. Each study has 𝑗 = 1,… , 𝑘𝑗 effect 
size estimates.
𝜃𝑖𝑗 = parameter for ES 𝑗 in study 𝑖 (e.g. 𝛿, 𝜌, 𝜔)
𝑇𝑖𝑗 = estimate of ES 𝑗 in study 𝑖 (e.g. 𝑑, 𝑔, 𝑟, 𝑜)
𝑣𝑖𝑗 = variances of ES 𝑗 in study 𝑖

𝑣𝑖𝑗 = 𝑣𝑎𝑟 𝑇𝑖𝑗 𝜃𝑖𝑗 = 𝑆𝐸(𝑇𝑖𝑗|𝜃𝑖𝑗)2

As before, we assume 𝑇𝑖𝑗 | 𝜃𝑖𝑗 ~ 𝑁(𝜃𝑖𝑗, 𝑣𝑖𝑗)
and we typically assume that the variances vij are known.

This is the jth
effect size reported 
in study i

This is the 
standard error 
reported for 
the jth effect 
size in study i

Assume: 
-Unbiased
-Variance known
-Estimate is normally 
distributed



Hierarchical Model  

Can be written:
𝑇𝑖𝑗 = 𝜃𝑖𝑗 + 𝜀𝑖𝑗 = 𝜇 + 𝜂𝑖 +ɸ𝑖𝑗 + 𝜀𝑖𝑗

where now we assume that:
𝜃𝑖𝑗 ~ 𝑁(𝜇, 𝜏2 + ⍵2)

Where
• 𝜇 is the average effect size
• 𝜏 is the standard deviation of the distribution of true study-average ES
• ⍵ is the standard deviation of the distribution of true ES within studies

ES Specific True 
Effect 

ES Specific 
Sampling Error



Within study 
independence

Assume that the residuals 𝜀𝑖𝑗 are not
correlated. 

This means for two ESs in the same study 
we have:

ES j: 𝑇"+ = 𝜇 + 𝜂𝑖 + ɸ𝑖𝑗 + 𝜀𝑖𝑗
ES k: 𝑇"! = 𝜇 + 𝜂𝑖 + ɸ𝑖𝑘 + 𝜀𝑖𝑘

Have covariance 
𝐶𝑜𝑣(𝑇"+, 𝑇"!) = 𝜏2 + ⍵2



Estimation of 
the average ES 𝜇

The rest follows in a similar form. 
• Inverse variance weights are 

most precise
• We observe the 𝑣𝑖𝑗 in our data 

and treat it as known
• We estimate both 𝜏2 and ⍵2

We use the same estimator, but 
with weights:

𝑤𝑖𝑗 = 1/(𝜏2 + ⍵2 + 𝑣𝑖𝑗)



Interpretation in this 
model
T is the estimate of the average 
effect size in the population.

The degree of heterogeneity can be 
summarized using 𝜏2 and ⍵2.

The total variation in true effect 
sizes is now 𝜏2 + ⍵2.



95% 
Prediction 
Intervals

A 95%PI for effect sizes is:

(𝜇 – 1.96 𝜏2+⍵2, 𝜇 + 1.96 𝜏2+⍵2)

A 95%PI for study-average effect sizes is:
(𝜇 – 1.96𝜏 , 𝜇 + 1.96𝜏)

This gives you a sense of the range of true effect sizes 
(or study average ES) found in your population (a 
measure of heterogeneity).



Multivariate Model  

Can be written:
𝑇𝑖𝑗 = 𝜃𝑖𝑗 + 𝜀𝑖𝑗 = 𝜇 + 𝜂𝑖 +ɸ𝑖𝑗 + 𝜀𝑖𝑗

where now we assume that:
𝜃𝑖𝑗 ~ 𝑁(𝜇, 𝜏2 + ⍵2)

Where
• 𝜇 is the average effect size
• 𝜏 is the standard deviation of the distribution of true study-average ES
• ⍵ is the standard deviation of the distribution of true ES within studies

ES Specific True 
Effect 

ES Specific 
Sampling Error



Multivariate Model  

Can be written:
𝑇𝑖𝑗 = 𝜃𝑖𝑗 + 𝜀𝑖𝑗 = 𝜇 + 𝜂𝑖 +ɸ𝑖𝑗 + 𝜀𝑖𝑗

where now we assume that:
𝜃𝑖𝑗 ~ 𝑁(𝜇, 𝜏2 + ⍵2)

Where
• 𝜇 is the average effect size
• 𝜏 is the standard deviation of the distribution of true study-average ES
• ⍵ is the standard deviation of the distribution of true ES within studies

ES Specific True 
Effect 

ES Specific 
Sampling Error

This looks the same as the 
Multilevel Model!



But now 
there is 
correlation

Now assume that the residuals 𝜀𝑖𝑗 are correlated:
ES 𝑗: 𝑇𝑖𝑗 = 𝜇 + 𝜂𝑖 + ɸ𝑖𝑗 + 𝜀𝑖𝑗
ES 𝑘: 𝑇𝑖𝑘 = 𝜇 + 𝜂𝑖 + ɸ𝑖𝑘 + 𝜀𝑖𝑘

Then the covariance is:
𝐶𝑜𝑣(𝑇"+, 𝑇"!) = 𝜏2 + ⍵2 + ⍴ 𝑣"+𝑣"!

Where ⍴ is the correlation between measurements 
𝑗 & 𝑘 on the same person within study 𝑖.

Like 𝑣𝑖𝑗 and 𝑣𝑖𝑘, ⍴ must be provided from the original 
study.  



Nevermind then…

This Multivariate Model has been around for a long time (it was in the original 
Hedges & Olkin!). 

But studies don’t often report these correlations, which has led people to avoid 
using this model. 

But we don’ t have to give up! Using a sensitivity + robustness approach is feasible:
• “Guess” at the correlation (e.g., .80) when unreported.
• And use RVE (next up)…



Multivariate is just an 
extension to Multilevel
So the interpretation is the same:

T is the estimate of the average effect size 
in the population.

The degree of heterogeneity can be 
summarized using 𝜏2 and ⍵2.

The total variation in true effect sizes is 
now 𝜏2 + ⍵2.



RVE: A safety net
Robust standard errors



What if your 
model isn’t 
quite right?

What if we have multiple effect 
sizes per study (so independent 
effect size model fails)?

But also, some of the effect sizes 
within studies might be correlated 
with each other (so multilevel 
model fails)?

But you also don’t have any 
reported info on the correlation 
structure (so multivariate model 
seems impossible)? 



Or variance 
problems

You’re having trouble extracting variances from 
some studies – e.g., correlations not reported 
between pre-post, or only sample size reported.

You can make assumptions to extract these – but 
you could be wrong. 

And if you’re wrong, your weights may not be 
exactly inverse variance.

Your standard errors could be wrong.



What’s wrong with this?
Our estimate 𝑇 of the population mean 𝜇 is ok.

But our standard error estimator has problems.

Recall, we used the estimator:

𝑆𝐸(𝑇) = $
∑!"#
$ ∑%"#

$% &!%

Which was based on the assumptions that the:
• Weights 𝑤𝑖𝑗 are exactly inverse variance.
• Variances are correctly specified.
• Effect sizes within studies are independent.

Misspecification 
-> 

Hypothesis tests might 
be wrong



Robust 
variance 
estimation 
(RVE)

Up until now, we have been using Model 
Standard Errors. 

Instead of using a model to estimate the 
variance, RVE uses the observed variation in 
effect sizes to estimate the standard error. 

Estimators of this type are also known as:
• Huber-White standard errors
• Cluster Robust Variance Estimation (CRVE)
• Empirical standard errors



Residuals as estimators

We define the observed residuals as: 𝑒𝑖𝑗 = 𝑇𝑖𝑗 – 𝑇

Instead of assuming we know that 𝑉(𝑇𝑖𝑗) = 𝜏2 + ⍵2 + 𝑣𝑖𝑗

We now estimate
𝑣(𝑇𝑖𝑗) = 𝑒𝑖𝑗2

𝑐𝑜𝑣(𝑇𝑖𝑗, 𝑇(+) = 𝑒𝑖𝑗𝑒𝑖𝑘
𝑐𝑜𝑣(𝑇(, , 𝑇(-+) = 0

Seems strange right? That’s because for each individual study this is a 
terrible estimate of each variance and covariance…



RVE estimator

…but we don’t care about how these individual estimates perform. We 
only care about them when averaged (sort of) across studies. 

Hedges, Tipton, and Johnson (2010) showed that when estimating the 
average effect size, if the within-study weights are equal, the RVE 
estimator can be written:

𝑣> 𝑇 =
∑"?@! 𝑤"A �̅�"A

∑"?@! 𝑤"
A



Hypothesis testing using RVE

We can use RVE to test:
𝐻0: 𝜇 = 0 𝑣𝑠 𝐻𝑎: 𝜇 ≠ 0

Tipton (2015) shows that the appropriate small-sample test is:

𝑡 = B
CD% (B)

And we can reject H0 if: |t| > 𝑡.FAG,HI
where typically 𝑑𝑓 ≅ 𝑘 – 1. 



What about heterogeneity?
Using RVE means that your hypotheses tests about the average effect size hold even if:

• The effect sizes are not normally distributed

• The variances are incorrect
• The weights are not inverse variance

But, RVE can’t help with heterogeneity parameters. In order to estimate 𝜏2 and ⍵2, 95% Prediction 
Intervals, 𝐼2, and test hypotheses about these, the above assumptions are required.

This means you should think of these heterogeneity statistics as good estimates “if the 
assumptions hold” and otherwise as approximations.



Final note
If you’ve heard about RVE before, you may be accustomed to thinking of this as: 

RVE vs Multivariate

But what I’m saying here is: 
It’s not either-or – it can be both.

Using the model provides you some structure and thus heterogeneity estimates. Adding 
RVE makes you robust to misspecification. Everyone wins!



Lab
metafor + clubSandwich



Activity

We will use the R package ‘metafor’ for both the independent effect 
sizes model and the hierarchical model.

We will use the R package ‘clubSandwich’ to implement RVE.

For both, we will use the TDV_KW.csv data.

Go to RStudio now and open MALab1.R



Wrap up: Three steps

1. Approximate your “random effects” (covariance) structure.

2. Model your “fixed effects” (here just a mean).

3. Guard against misspecification. Use Robust Variance Estimation to 
estimate our standard errors and hypothesis tests. 



Citations (for your proposal)

• Borenstein, M., Higgins, J. P., Hedges, L. V., & Rothstein, H. R. (2017). Basics of meta-analysis: I2 is not an 
absolute measure of heterogeneity. Research synthesis methods, 8(1), 5-18.

Why prediction intervals should be reported:

• Hedges, L.V., Tipton, E., and Johnson, M.C. (2010) Robust variance estimation in meta-regression with 
dependent effect size estimates. Research Synthesis Methods. 1(1): 39-65. Erratum in 1(2): 164-165. 

• Tipton, E. (2015) Small sample adjustments for robust variance estimation with meta-regression. 
Psychological Methods, 20(3): 375 – 393. 

• Tanner-Smith, E., Tipton, E., & Polanin, J. (2016) Handling Complex Meta-Analytic Data Structures using 
Robust Variance Estimates: A Tutorial in R. Journal of Developmental and Life-Course Criminology, 2(1): 
85-112. 

• Pustejovsky, J. & Tipton, E. (2021) Meta-Analysis with Robust Variance Estimation: Expanding the Range 
of Working Models. Forthcoming in Prevention Science. 

RVE & t-tests:



Meta-Regression:
Please use more 
than one variable
Elizabeth Tipton
Northwestern University



Overview

Moderators and analysis 
plans

Meta-regression

Lab: Estimating meta-
regression models



Moderator analyses
An overview



Heterogeneous effect sizes
In the social sciences and education, effect sizes are most often heterogeneous. 

This is indicated by:
• A large degree of variation (𝜏2 and ⍵2)
• A wide 95%PI
• A large 𝐼2 value

When heterogeneity is detected, it is important to be cautious in the interpretation of the 
average effect size. 



Careful 
interpretation

Whenever there is heterogeneity, the results of a 
meta-analysis must be carefully interpreted, 
particularly in a policy context. 

• If all effects are the same sign, the question is 
really about the magnitude of the effect.

• If some effects are positive and some are negative, 
the question is really about for whom, what, when, 
where, etc the intervention works.



Ecological 
fallacy

The ecological fallacy: the relationship between the 
aggregate 𝑋 and aggregate 𝑌 may differ from the 
relationship between each 𝑋 and 𝑌.

For example, if you find that the effect size of an 
intervention is larger for studies using older children than 
for studies using younger children, it could either be that
• in fact the treatment works better for older children than 

younger children, or
• the treatments used for older children were better than 

those for younger children, or
• the research groups doing studies on older children had 

better quality than those using younger children.



Confounding 
and controls

Recall that meta-analysis is an 
observational study. Even if all of the 
studies themselves are experiments, 
the study conditions or populations 
were not randomly assigned to the 
experiments.

For this reason, it is important to 
separate out “focal” variables from 
“controls”.



Durlak and Lipsey (1991)

Overall Mean ES

Research Design

Comparison 

group 

Pre-post 

Primary .51  (k = 260) .43 (k = 200) .76 (k =   60)

Secondary .58  (k = 240) .36 (k = 100) .74 (k = 140)



Durlak and Lipsey (1991)

Overall Mean ES

Research Design

Comparison 

group 

Pre-post 

Primary .51  (k = 260) .43 (k = 200) .76 (k =   60)

Secondary .58  (k = 240) .36 (k = 100) .74 (k = 140)



Durlak and Lipsey (1991)

Overall Mean ES

Research Design

Comparison 

group 

Pre-post 

Primary .51  (k = 260) .43 (k = 200) .76 (k =   60)

Secondary .58  (k = 240) .36 (k = 100) .74 (k = 140)

This is methodological 
confounding!!



Hypothesis 
testing

Whenever possible, control for confounding 
variables. There is no reason to conduct 
analyses 1-variable at a time. 

But, when there are multiple variables, there 
are two concerns that arise with testing:
• Inflated Type I error (which can arise from 

“fishing” or “p-hacking”)
• Not having adequate power (inflated Type II 

error)

We need to be careful.



Strategies to 
contain error

1. Pre-specify covariates of interest and treat 
these analyses as “confirmatory”.

2. Include confounders in your model, but 
don’t report their p-values or hypothesis 
tests (that’s not their role).

3. Use multiple comparisons corrections for 
your analyses (i.e., smaller p-value 
threshold a la Bonferoni)

4. Make clear when analyses are exploratory 
and emphasize the need for future studies 
to test these hypotheses. 



Meta-regression
Models and methods



Mixed 
models

Moving from meta-analysis to meta-
regression isn’t that difficult.

It just involves adding covariates to the 
models we’ve already described.

We will call all of these covariates 𝑿= 
(𝑋1, 𝑋2, … , 𝑋𝑝), regardless of if they are 
continuous or categorical, focal or controls.



General MR 
model

Recall that in general we have:
𝑇 = fixed + residuals

Where “fixed” is the mean ( 𝜇 )   
and
Residuals = 
• 𝜂𝑗 + 𝜖$% in the Univariate Model
• 𝜂𝑗 + ɸ𝑖𝑗 + 𝜖$% in the Multilevel and 

Multivariate Models

In MR, we model this fixed part using regression. 



Three steps

1. Just as in MA, we select our “random effects” 
structure:

• Univariate model
• Multilevel model
• Multivariate model

2. Then we model the “fixed” part using 
covariates. 

3. And use Robust Variance Estimation to 
estimate our standard errors and hypothesis 
tests. 



Example of a model

𝜃𝑖𝑗 = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + 𝛽3𝑋3𝑖𝑗 + 𝛽4𝑋4𝑖𝑗 + 𝜂𝑗 + ɸ𝑖𝑗

For example: 
• 𝑋1 = average age of patients
• 𝑋2 = dummy variable indicating if study is an RCT
• 𝑋3 = length of time patients were in treatment 
• 𝑋4 = dummy variable indicating if outcome is physical measure (vs 

cognitive)



Example of a model

𝜃𝑖𝑗 = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + 𝛽3𝑋3𝑖𝑗 + 𝛽4𝑋4𝑖𝑗 + 𝜂𝑗 + ɸ𝑖𝑗

For example: 
• 𝑋1 = average age of patients
• 𝑋2 = dummy variable indicating if study is an RCT
• 𝑋3 = length of time patients were in treatment 
• 𝑋4 = dummy variable indicating if outcome is physical measure (vs 

cognitive)

Control/ confounder variable



Estimation of the coefficients
In general, we can use Weighted Least Squares (WLS) to estimate the regression 
coefficients.

These are estimated using: 𝒃 = 𝑿’𝑾𝑿 !"𝑿’𝑾𝑻

Where we can specify the weights (𝑾) based upon the model for the random effects that 
we use (so as to be approximately inverse variance). 



RVE for 
estimation of 
the standard 
errors

And again, we use RVE to estimate the 
standard errors. 

Tipton (2014) shows that we write this 
estimator more generally as:

𝑣𝑅(𝒃) =
𝑿’𝑾𝑿 !"𝑿’𝑾𝑨𝒆𝒆’𝑨𝑾𝑿 𝑿’𝑾𝑿 !"

where the 𝑨 matrices provide adjustments 
so that the estimator works well in small 
and moderate samples. 
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where the A matrices provide adjustments so that the estimator works 
well in small and moderate samples. 

Club 
Sandwich
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And again, we use RVE to estimate the standard errors. 
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well in small and moderate samples. 
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Sandwich



Individual 
covariates 
hypotheses

For each of the focal variables, you could test if 
there is a relationship or not in the population, 
i.e., 

𝐻0: 𝛽𝑚 = 0 𝑣𝑠 𝐻𝑎: 𝛽𝑚 ≠ 0

Tipton (2015) test: 𝑡, = -#
./$(-#)

And we reject H0 when |𝑡,| > 𝑡.345,78#

Note: the degrees of freedom (𝑑𝑓,) depend on 
the covariate.



Joint hypothesis tests

Example: Suppose there are 3 age groups studied: children, teenagers, and 
adults, and that these are included in the model as 2 dummy variables. 

𝐻0: 𝛽1 = 𝛽2 = 0 vs 𝐻0: 𝛽1 ≠ 0 &/𝑜𝑟 𝛽2 ≠ 0

Tipton & Pustejovsky (2015) AHT F-test (here 𝑞 = 2): 

𝐹94 =
7:;<9
7;

𝒃94 − 𝟎 ′ 𝒗= 𝒃94
9/4 𝒃94 − 𝟎

Reject H0 if 𝐹94 > 𝐹.345,;,78#?7:;<9 where again, 𝑑𝑓, = 𝑑 –𝑞 + 1 are 
estimated. 



Degrees of 
freedom

In both the t-test and F-tests there are degrees of 
freedom that are estimated. 

These degrees of freedom depend on:
• The number of independent studies
• The number of covariates tested
• The type of covariates and features of the 

covariate, including skewness and balance

If 𝑑𝑓! > 4 you can trust the p-values that are given. If 
𝒅𝒇𝒎 < 𝟒, the approximation isn’t as good and you 
should use a higher standard of evidence (e.g., 𝑝 <
.01). 



Descriptive 
comparisons

How much of the ES variability do the moderator variables 
explain?

To answer this, we can calculate an 𝑅2 value, like in 
regression:

1. Run the model without any variables and get 𝜏2

2. Run the model with variables and get 𝜏𝑐2

3. Then the variables explain 100*𝑅2 of the variation in ESs, 
where

𝑅2 = 1 – 𝜏𝑐2/𝜏2

Caveat: This doesn’t always turn out great – for various reasons, you can end up with 

𝑅% < 0 .



Lab
metafor + clubSandwich



Activity

MR is straightforward – now we build off of what you already know 
how to do in metafor and clubSandwich.

We will use the same data. But now we will add moderators and F-
tests.

Go to RStudio now and open MALab2.R.



Wrap up: 
Four steps

1. Approximate your “random effects” 
covariance structure

2. Model your “fixed effects”

3. Identify your focal variables and your 
confounding variables. 

3. Guard against misspecification. Use 
Robust Variance Estimation to estimate 
our standard errors and hypothesis tests. 



Remember 
these strategies 
to contain error

1. Pre-specify covariates of interest and 
treat these analyses as “confirmatory”.

2. Include confounders in your model, but 
don’t report their p-values or 
hypothesis tests (that’s not their role).

3. Use multiple comparisons corrections 
for your confirmatory analyses (i.e., 
smaller p-value threshold a la 
Bonferoni)

4. Make clear that other analyses are 
exploratory and emphasize the need 
for future studies to test these 
hypotheses. 
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