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Overview

e Considerations
* Parameters of contingency tables

e Loglinear model
e Hypotheses to be tested
e |nterpretation of estimates
 Model selection

e Useful parameterization for some categorical models



Considerations

e Categorical and discrete data
e Poisson (count data)
e Binomial (dichotomous data)
 Multinomial (polytomous data)

e Research questions
e All variables are categorical
 Want to describe and understand associations between variables



Parameters



Categorical Data

* Frequencies or cell counts
 Compute probabilities
* pi = fi/n
24
* Eg, Poiue = E = (0.258

Color Count p

Blue | 24 |0.258
Brown 48 0.516
Green 15 0.161
Other 6  0.065
Total | 93 | 1




Contingency Tables

* Assume two categorical variables, A with i=1, ...,/ categories and B with
J=1,...,J categories

B
e Frequencies/cell counts can be 1 2 .. J

arranged intoan ] X J 1| fy | fp | | | f
contingency table

2 f2‘1 f22 f2J f2+

A 3 f31 f32 f3J f3+

f,.

fl1 fl2 fIJ f5+




2 x 2 Contingency Table

e Data from Sewell and Shah Plans to Attend College (Sewell & Shah, 1968)
(1968) on 10,319 Wisconsin No  Yes Total
high school seniors

* See also Fienberg (1977) :Z’:}i erment Low 4653 312 4969

e Fundamental parameters ’ High 2290 3064 5354

* Probabilities Total 6943 3376 10319
e Odds

e Odds Ratios



Probabilities

* Joint probabilities Plans to Attend College (Sewell & Shah, 1968)

e Describe co-occurrence
fij
* D =" No  Yes Total

n 4653
* PLow,No = = 0.45 Parental Low 4653 312 4965

10319
Encouragement

High 2290 3064 5354
Total 6943 3376 10319



Probabilities

 Joint probabilities
* Describe co-occurrence
* pij = Ty No Yes Total

n 4653
* PLow,No = = 0.45 Parental Low ‘ 4653 ‘ 312 4965

10319
Encouragement

Plans to Attend College (Sewell & Shah, 1968)

High 2290 3064 5354

Total 6943 3376 ‘ 10319‘




Probabilities (2)

 Joint probabilities

e Describe co-occurrence

. _ fij
Py =5
4653

* PLow,No = 10319 = 0.45

Plans to Attend College (Sewell & Shah, 1968)

No Yes Total

Parental Low 4653 312 4965
Encouragement 0.45 0.03
High 2290 3064 35354
0.22 0.30

Total 6943 3376 10319



Probabilities (3)

* Marginal probabilities Plans to Attend College (Sewell & Shah, 1968)
. . =Lt S+
Pi+ =~ -, also— No  Yes Total
. _ 4965 _ 0.48
PLow = 79319 ~ Parental Low 4653 312 4965
Encouragement

High 2290 3064 5354
Total 6943 3376 10319



Probabilities (3)

* Marginal probabilities Plans to Attend College (Sewell & Shah, 1968)
e o, =T 150 L
Pi+ =~ -, also— No  Yes Total

. _ 4965 _ 143
PLow = 79319 ~ Parental Low 4653 312 | 4965

Encouragement . 2990 3064 5354
Total 6943 3376 |10319
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Probabilities (4)

* Marginal probabilities Plans to Attend College (Sewell & Shah, 1968)
o p;, =1t alsoﬁ

Di+ ! n No Yes Total

. _ 495 _ g
PLow = 19310 ' Parental Low 4653 312 4965
Encouragement 0.48
High 2290 3064 5354
0.52

Total 6943 3376 10319
0.67 0.33



Probabilities (5)

* Conditional probabilities Plans to Attend College (Sewell & Shah, 1968)
e Implies causal structure (DV|IV)
Dij No Yes Total
C P T 5,
Pix Parental Low 4653 312 4965

* E.g., What is the probability that they
are not planning to attend college,

given low parental encouragement?
045 _ .94 Total 6943 3376 10319

* PNo|Low = 048

Encouragement High 2290 3064 5354



Probabilities (5)

e Conditional probabilities

e Implies causal structure (DV|IV)

e« p... = PU
pjll B Pi+

e E.g., Given low parental
encouragement, what is the
probability that they do not plan to
attend college?

0.45
* PNojLow = {5 — 0.94

Plans to Attend College (Sewell & Shah, 1968)

No Yes Total

Parental Low _46 312 _496
Encouragement
0.94

High 2290 3064 5354
0.22 030 052

Total 6943 3376 10319
0.67 0.33
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Odds

* odds = p/(1 - p) Plans to Attend College (Sewell & Shah, 1968)
e E.g., Odds of seniors not planning to
attend college relative to those No Yes Total
planning to attend
¢ Ofy = D1u/Dos = % — 205 Parental Low 4653 312 4965

e Seniors are twice as likely to not plan Encouragement

to attend college, compared to those

planning to attend Total ‘ 6943 H 3376 ‘ 10319

High 2290 3064 5354
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Odds

* odds = p/(1 - p) Plans to Attend College (Sewell & Shah, 1968)
e E.g., Odds of seniors not planning to
attend college relative to those No Yes Total
planning to attend
¢ Ofy = D1u/Dos = % — 205 Parental Low 4653 312 4965

e Seniors are twice as likely to not plan Encouragement

to attend college, compared to those

planningto attend Total ‘ 6943 H 3376 ‘ 10319
e E.g., Odds of seniors planning to

attend college compared to those

planning to not attend
3376
i .Q2_|_ = m = 0.48
e Seniors are half as likely to plan to
attend college, compared to those

that are not planning to attend

High 2290 3064 5354




Odds Ratio

* Odds ratios Plans to Attend College (Sewell & Shah, 1968)
e Compares two odds
odds;  p1/(1-p1) No Yes Total
o padse pa/lopa) Parental Low | 4653 312 | 4965
e Ratio of cross-products
_ (P11/P12) _ P11P22 _ f11f22 Encouragement

11

— — — High | 2290 3064 | 5354
(P21/P22)  P12P21  fiz2f21

_ (4653/312) _ 4653+3064 _ 14 gg Total 6943 3376 10319

11 ™ (2290/3064) = 2290%312

e Students with low parental
encouragement have estimated
odds of planning to not attend
college that are 20 times the
estimated odds of someone with
high encouragement




Odds Ratio (2)

e Local odds ratios
e Adjacent cells

* Local odds ratios perfectly define all

associations within the table!

A

3 4
fi1 fi2 fi3 f1a
f21 f2 f3 f24

fa3 f34
fa1 f42 f3 fas
51 s, fs3 fs4
f. f.) f.s fog
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Independence

e No association between two variables

e Equal odds ratios
e Joint probability is a product of the marginals

e Not significantly different from expected values
e Can you collapse the table across a dimension?

e To do this, the variable must have no significant interaction with the other
variable



Multiway Tables

Plans to Attend College (Sewell & Shah, 1968)

e Simpson’s Paradox

e When marginal tables leads to No Yes
highly misleading inference Male Low 1949 138

e Specification problem
e Correct functional form High 1203 1703

e All necessary variables
 No unnecessary variables

Female Low 2704 176
High 1087 1361



Independence (2)

e Tests of independence Plans to Attend College (Sewell & Shah, 1968)

e Pearson chi-square statistic, No Yes Total

2
X _ _ - Parental Low 4653 312 4965
e Likelihood ratio chi-square Encouragement

statistic, G2
e Degrees of freedom Total 6943 3376 10319

e (I x)J)-# of estimated
parameters

High 2290 3064 5354



Independence (2)

data college;
Input encouragement$ attend $ count @Q@;
datal ines;
low no 4653 low yes 312
high no 2290 high yes 3064

proc freq data=college order=data;

welght count;

tables encouragement*attend/chisqg expected;
run;



Test of Independence (3)

Statistics for Table of encourage by college

Statistic DF Value | Prob
Chi-Square 1 3037.2184  =.0001
Likelihood Ratio Chi-5quare . 1 3405.7306 <.0001
Continuity Adj. Chi-5quare 1 3034.9045 | <0001
Mantel-Haenszel Chi-Square | 1 3036.9241 <. 0001
Phi Coefficient 0.5425
Contingency Coefficient 0.4769
Cramer's V/ 0.5425

* H,: Independence

 How plausible is it that the local odds
ratiois 17

e Larger values are the result of
greater differences between
expected and observed values

* Reject H,
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Loglinear Models



The Loglinear Model

* A type of generalized linear models (GLM), the family of models that
extend ordinary least squares regression to non-normal distributions

 Models to describe the joint distributions

 The dependent variable is a cell size (no distinction between dependent and
independent variables)

e Used to analyze cell counts in a more formal and complete manner
(Hagenaars, 1993)

* The canonical link is the log link



Fundamental Parameters

e Odds and odds ratios
e Range of [0, o]
* Not symmetrical around O
e Value of 1 indicates equal odds and independence

e Logits
* Log(0)
e Range of [—o0, 0]
e Symmetric around 0
e Value of O indicates equal odds and no difference



Multiway Tables

e Higher-order odds ratio

¢« 0,11 = f111f221/f112f222

f121/212 f122f212

e Partial odds ratio

e Average conditional odds
e Can’t add and divide odds ratios
e Geometric mean (multiply and take nth root)

1/K
* 911p — (Hlk{ O11k) = Ii/91119112 011k




The Independence Model

* [n probability form
e Joint probabilities can determined by the marginals
* Pij = Di+P+j

* |[n expected frequency form

* Hij = NPi+P+j
e This form is multiplicative

e Take the natural log of expected frequencies

* Yields the loglinear model
e Additive



Multiplicative and Additive Models

e Taking the natural log yields the loglinear model of independence

* Uij = NPi4Dy; (Multiplicative, expected frequencies)
* log(uyj) = log(n) +log(py,) + log(p.;) (Additive)
o log(uij) =p+ A4 + 47 (Additive, loglinear notation)

* Where A and B denote parental encouragement and college plans, respectively



Analogous to ANOVA

—_ A B
* log(uj) = u+ A7 + 4
u is the average cell size, or “grand mean”

A4 is the row effect for variable A, or deviation from the average cell size due to
level i

/115 is the column effect of variable B, or deviation from the average cell size due
to level j
* The equation for the expected values

e Sparseness
e Can’t take the natural log of O

 |f there are cell counts of O, they need to be adjusted
e Create a new count variable with a very small amount added (e.g., 0.0001)



Loglinear Model of Independence

* The loglinear model of independence for three variables is:
log(fix) =+ A4 + 47 + 2%

* This model omits all higher-order terms
e Assumes there are no interactions between variables (e.g., /1‘{}3 = 0)



Estimation

* SAS
* PROC GENMOD
* PROC CATMOD

* Llem

* R
* loglin()
* glm()



Example — Independence Loglinear Model

data college;
input sex $ encouragement $ attend $ count;

datalines;

male flow no 1949
male low vyes 136
male high no 1203
male high yes 1703

female flow no 2704
female low vyes 176
female high no 1087
female high yes 1361



Example — Independence Loglinear Model

proc genmod data=college;
class sex encouragement attend,
model count = sex encouragement attend /
dist=poir link=log lrci type3 obstats;
run;



Output — Independence Loglinear Model

Criteria For Assessing Goodness Of Fit

* H,: Independence holds

Criterion DF Value Value/DF

Deviance 4| 35670473 891.7618

Scaled Deviance 4 3567.0473 891.7618 .

Pearson Chi-Square 4 3268.5410 817.1353 ° Ove ra ” flt

Scaled Pearson X2 4 32685410 817.1353 * Large X* and G*
Log Likelihood 64231.0306

Full Log Likelihood -1818.0268

AIC (smaller is better) 3644 0537

AICC [smaller is better) 3657 3870

BIC {smaller is better) 3644 3714



Output — Independence Loglinear Model

Analysis Of Maximum Likelihood Parameter Estimates

Standard  Likelihood Ratio 95%

Parameter DF Estimate Error Confidence Limits  Wald Chi-Square | Pr = Chi5q
Intercept 1 6.6665 0.0225 6.6223 6.7103 88151.3 <0001
sex female 1 0.0653 0.0197 0.0267 0.1040 11.00 0.0009
sex male 0 0.0000 0.0000 0.0000 0.0000
encouragement  high 1 0.0754 0.0197 0.0368 0.1141 14 66 0.0001
encouragement  low 0 0.0000 0.0000 0.0000 0.0000
attend no 1 0.7210 0.0210 0.6800 0.7623 1180.96 <0001
attend yes 0 0.0000 0.0000 0.0000 0.0000
Scale 0 1.0000 0.0000 1.0000 1.0000

e Convert estimates back into cell counts (dummy-coding approach)
 Males with low encouragement not planning to attend college

© 111 =exp(A+24 +25 +2§) = exp(6.67 + 0+ 0+ 0.72) = 1615.662



Output — Independence Loglinear Model

count
1949
136
1203
1703
2704
176
1087
1361

encouragement  attend

low no
low Ves
high no
high Ves
low no
low Vs
high no

high Vs

Predicted
Value

16157671
785.6589
17423599
g47.21405
1724 8662

838.7078
18600068
90441925

Linear
Predictor

7.3875651
6.6665227
74629958
6.7419534
74529048
6.7318624
7.5283354

6.807293

Error
of the
Linear

Predictor

0.0187612
0.0224535
0.0183671
0.0221253
0.0184204
0.0221695
0.0180188

0.021837

HessWqgt
16157671
785.6589
17423599
84721405
1724 8662
838.7078
1860.0068
90441925

Lower
1657 4323
751.83327
1680.7526
81126002
1663.7036
603.04509
1795 4648
86652699

Upper
1676.2669

821.00638
1806.2255
884.76152
1788.2773
875.95427
1926.8658
943.96849

Raw
Residual

333.23283
-649.6589
-539.3599
855.78595
979.13381
-662.7078
-773.0068
45658075

Pearson
Residual

8.2900754
-23.1776
-12.92141
29401438
23.575686
-22 8832
-17.92363
16.18213
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The Saturated Loglinear Model

* Models all possible associations between cell counts
log(fik) =+ A8 + A7 + A + 457 + A7 + A + A0°

i is the average cell size

/1‘{1,&?, and Ai are the main effects of variables A, B, and C
/1‘1-41-3, A4E, Afkc, and /1‘1-4]-?;6 are higher-order terms



The Saturated Loglinear Model

e “Saturated” means the number of cells is equal to the number of
parameters estimated

e Just-identified model

* This model is often not of interest
 No degrees of freedom available to test hypotheses
* Does not simplify interpretation of the data



Example — Saturated Loglinear Model

proc genmod data=college;
class sex encouragement attend,
model count = sex]encouragement]attend /
dist=poir link=log lrci type3 obstats;
run;



Example — Saturated Loglinear Model

Criteria For Assessing Goodness Of Fit

Criterion DF Value  Value/DF
Deviance 0 0.0000

Scaled Deviance 0 0.0000

Pearson Chi-Square 0.0000

Scaled Pearson X2 0.0000

Log Likelihood 660145543

Full Log Likelihood -34 5032

AIC (smaller is better) 85.0064

AICC (smaller is better)

BIC {smaller is better) 85.6420

* No degrees of freedom to test
model fit
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Example — Saturated Loglinear Model

Analysis Of Maximum Likelihood Parameter Estimates

Parameter

Intercept

sex

sex

encouragement
encouragement
sex*encouragement
sex“encouragement
sex“encouragement
sex*encouragement
attend

attend

sex*attend

sex*attend

sex attend

sex*attend
encouragement*attend
encouragement*attend
encouragement*attend
encouragement*attend
sex“encourage*attend
sex*encourage*attend
sex*encourage*attend

sex*encourage*attend

female
male
high
low
female
female
male
male
no
yes
female
female
male
male
high
high
low
low
female
female
female

female

high
low
high

low

no
yes
no
yes
no
yes
no
yes
high
high
low

low

no
yes
no

yes

DF | Estimate

1

- o o o Ao o o - o o o =

[T = R ]

4.9127
0.2578
0.0000
256275
0.0000
-0.4820
0.0000
0.0000
0.0000
2.6624
0.0000
0.0696
0.0000
0.0000
0.0000
-3.0100
0.0000
0.0000
0.0000
0.0532
0.0000
0.0000
0.0000

Standard | Likelihood Ratio 95%
Confidence Limits

Error
0.0857
0.1142
0.0000
0.0891
0.0000
0.1198
0.0000
0.0000
0.0000
0.0887
0.0000
0.1180
0.0000
0.0000
0.0000
0.0964
0.0000
0.0000
0.0000
0.1303
0.0000
0.0000
0.0000

4.7397
0.0349
0.0000
2.3570
0.0000
-0.7180
0.0000
0.0000
0.0000
24928
0.0000
-0.1628
0.0000
0.0000
0.0000
-3.2027
0.0000
0.0000
0.0000
-0.2016
0.0000
0.0000
0.0000

5.0761
0.4829
0.0000
2.7066
0.0000
-0.2479
0.0000
0.0000
0.0000
2.8408
0.0000
0.3000
0.0000
0.0000
0.0000
-2.8247
0.0000
0.0000
0.0000
0.3096
0.0000
0.0000
0.0000

Wald Chi-Square | Pr = ChiSq

328225
510

804.55

16.18

90115

975.83

=.0001
0.0239

=.0001

<.0001

<.0001

0.5553

<.0001

0.6832

e All parameters estimated
e Some non-significant interactions
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Example — Sat

count
1949
136
1203
1703
2704
176
1087
1361

SeX
male
male
male
male
female
female
female

female

encouragement attend

low no
low Ves
high no
high Ves
low no
low Vs
high no
high Ves

Predicted
Value

1949

136
1203
1703
2704

176
1087
1361

Linear
Predictor

7.5750717
4.9126549
7.0925737
7.4401467
7.9024874

5170484
6.9911765

7.215975

Standard

Error

of the

Linear
Predictor Hess\Wqt

0.0226513 1949
0.0857493 136
0.0288315 1203
0.0242322 1703
0.0132308 2704
0.0753773 176
0.0303309 1087
0.0271063 1361

Lower
18643651
114 96059
1136.9051

1624008
2603.9787
15182767
10242638
1290.5807

urated Loglinear Model

Upper
2037.4769
16088992
1272.9374
1785.8342
2807 8632
204.02078
1153.5788
14352617

* Predicted values perfectly represent the observed data
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Reduced Loglinear Models

* Do you need higher-order terms, or can they be eliminated?
 Reduced models with good fit greatly simplifies the interpretation
e Parsimony

e Possible models
 Model of all possible associations
e Models with main effects and two-ways interactions
e Models with main effects only
 Model of independence



Reduced Loglinear Models

* A three-variable model that permits some two-way associations
ABCN _ A B C AB BC
log(fijx ) =+ A + A7 + A + 47 + A

* Two factor terms describe conditional odds ratios
o )4B

ij
. Afkc association between B and C, controlling for A

e This model is referred to as (AB, BC)

association between A and B, controlling for C



Reduced Loglinear Models

e Test whether there is Plans to Attend College (Sewell & Shah, 1968)
conditional independence
Ly . No Yes
within the multiway table
Male Low 1949 136

 Compare the fit of various
reduced loglinear models to High 1203 1703

the saturated model fomale  Low 704 176

High 1087 1361



Example — Reduced Loglinear Models

Sex Encouragement Attend (S,E,A) (SE,A) (SA EA) (SE, SA,EA) (SEA)
Male Low No 1615.8 14029 21124 1945.9 1949
Yes 785.7 682.1 170.0 139.1 136

High No 17424 19553 1039.6 1206.1 1203

Yes 847.2 950.7 1669.0 1699.9 1703

Female Low No 17249 1937.8 2540.6 2707.1 2704
Yes 838.7 042.2 142.0 172.9 176

High No 1860.0 1647.1 1250.4 1083.9 1087

Yes 904 .4 800.9 1395.0 1364 .1 1361
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Example — Reduced Loglinear Models

Sex Encouragement Attend | (S,E,A) (SE,A) (SA EA) (SE, SA,EA) (SEA) |
Male Low No 1615.8 14029 21124 1945.9 1949
Yes 785.7 682.1 170.0 139.1 136
High No 17424 19553 1039.6 1206.1 1203
Yes 847.2 950.7 1669.0 1699.9 1703
Female Low No 17249 1937.8 2540.6 2707.1 2704
Yes 838.7 042.2 142.0 172.9 176
High No 1860.0 1647.1 1250.4 1083.9 1087
Yes 904 .4 800.9 1395.0 1364 .1 1361
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Example — Reduced Loglinear Models

Sex Encouragement Attend (S,E,A) (SE,A) (SA,EA) (SE, SA, EA)| (SEA)
Male Low No 1615.8 14029 21124 1945.9 1949
Yes 785.7 682.1 170.0 139.1 136

High No 17424 19553 1039.6 1206.1 1203

Yes 847.2 950.7 1669.0 1699.9 1703

Female Low No 17249 1937.8 2540.6 2707.1 2704
Yes 838.7 042.2 142.0 172.9 176

High No 1860.0 1647.1 1250.4 1083.9 1087

Yes 904 .4 800.9 1395.0 1364 .1 1361
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Example — Reduced Loglinear Models

Sex Encouragement Attend (S,E,A) (SE,A) (SA,EA) (SE, SA, EA)| (SEA)
Male Low No 1615.8 14029 21124 1945.9 1949
Yes 785.7 682.1 170.0 139.1 136

High No 17424 19553 1039.6 1206.1 1203

Yes 847.2 950.7 1669.0 1699.9 1703

Female Low No 17249 1937.8 2540.6 2707.1 2704
Yes 838.7 042.2 142.0 172.9 176

High No 1860.0 1647.1 1250.4 1083.9 1087

Yes 904 .4 800.9 1395.0 1364 .1 1361

e Cell counts —how do they compared to the saturated model?
 Model (SE, SA, EA) comes the closest to the observed data
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Model Selection

Model X2 G2 DF p
(S, E, A) 3268.54 3567.05 4 <.0001
(S, EA) 160.851 161.32 3 <.0001
(SA, E) 3104.86 3492.11 3 <.0001
(SE, A) 3042.77 3410.98 3 <.0001
(SE, SA) 2993.7 3336.04 2 <.0001
(SE, EA) 5.2546 525 2 0.0724
(SA, EA) 86.5847 86.38 2 <.0001
(SE, SA,EA) 0.1665 0.17 1 0.683
(SEA) 0 0 0 0

Note. P-values are for G* statistic.



Loglinear Models

 Hypotheses to be tested

e Independence
e Reduced models

* Interpretation
e For dummy-coding approach, ANOVA-style decomposition
e Convert estimates into expected cell counts
* Males with low encouragement not planning to attend college
e 111 =exp(A+24 + 25 +2§) = exp(6.67 + 0+ 0+ 0.72) = 1615.662
 Model selection
e Retain the model that fits well and represents the observed data well



Loglinear Parameterization of Common
Categorical Models



The Logistic Model

e Special case of the generalized linear model
e Regresses a binary dependent variable on 1+ independent variables
Models the log of the odds of the dependent variable
 The canonical link function is the logit
e Does not describe relationships among independent variables

 When one variable is binary, the logistic models for that response are
equal to certain loglinear models

e Construct logits for one variable to help interpret loglinear models (Bishop,
1969)



Using Logistic Models to Interpret

e Two types of coding yield identical estimates
e Dummy coding (0, 1)
e Effect coding (-1, 1)

 |dentifying constraints and power rules
¢ YA =0
e Lambdas sum to zero in effect coding approach
 When you change an odd number, change the sign
o 14 =-14
 When you change an even number, same sign

A = Ag= —230= 248



Using Logistic Models to Interpret

e Odds ratios relate to two-factor loglinear parameters and main effects
 The log odds ratio for the effect of Aon C

Logit Loglinear

A A AC | 1AC  1AC  1AC
b1 — B3 AT + A5 — Af7 — Aog

1) Specify a logit for one variable
2) Substitute the loglinear parameterization for the odds
3) Use power rules to substitute and solve



Using Logistic Models to Interpret

1) Form a logit for the loglinear model
o log(pijr) =pu+ 2 + A7 + A + 57 + 30 + A5
e Suppose A is the dependent variable and E and A are explanatory variables

. . AN P(A=1) 1 _ P(A=1|S=i,E=))
logit[P(A = 1) = log [1—13}5,4:1] = log [P(A=2|S=i,E=j)
ij1

- log (f_) ~ log(fi1) — log(fis2)
lj




Using Logistic Models to Interpret

1) Form a logit for the loglinear model
o log(pijr) =pu+ 2 + A7 + A + 57 + 30 + A5
e Suppose A is the dependent variable and S and E are explanatory variables

. . AN P(A=1) 1 _ P(A=1|S=i,E=))
logit[P(A = 1) = log [1—13}5,4:1] = log [P(A=2|S=i,E=j)
ij1

- log (f_) ~ log(fi1) — log(fis2)
lj

2) Substitute the loglinear parameterization for the odds
=+ + X8 +28 + 57 + 230 + A7
—(UH+ X A5+ AT+ + A




Using Logistic Models to Interpret

1) Form a logit for the loglinear model
o log(pijr) =pu+ 2 + A7 + A + 57 + 30 + A5
e Suppose A is the dependent variable and E and A are explanatory variables

. _ o P(A=1) | _ P(A=1|S=i,E=))
logit[P(A =1) = log [1_1?,4:1] = log [P(A=2|S=i,E=j)
ij1

- log (f_) ~ log(fi1) — log(fis2)
lj

2) Substitute the loglinear pa?meterizati? for the odds

=(p+ X+ X + 248+ 47 + 430 + A
B BURC R, G e, X
— (Af_/lél) + (41 —Aip) + (/1]1 _Ajz



Using Logistic Models to Interpret

= (M=) + A =) + (-2



Using Logistic Models to Interpret

= (=29 + B — 23D + 5147
3) Use power rules to substitute again
=224 + 230 + 24
Loglinear parameters have corresponding logit parameters
logit[P(A =1)] = a + B{+B5



The Logistic Model

* The equivalent parameterizations enhance interpretation

e Historical breakthrough

e Logistic models could be solved using iterative proportional fitting, which was
previously used to solve loglinear models (Goodman, 1964; 1968)



The Latent Class Model

 Latent class analysis (LCA) is a special case of discrete (finite) mixture
models (McLachlan & Peel, 2000; Newcomb, 2000)
e Used to identify unobserved or latent groups
e Assumes conditional independence

e Controlling for the latent variable, all manifest variables are independent
 Two equivalent parameterizations (Goodman, 1974; Haberman, 1979)
e Probabilistic
e Loglinear



The Latent Class Model (3)




LCA Parameterizations

* The basic LCA model, assuming 3 manifest variables and 1 latent
variable

* Probabilistic parameterization

ABCX__x_A|lX_B|X_C|X
Tijkt =Mt My T Ty

e { is the latent class probability or “mixing” probability that a given member

of the sample isin latent class t

AlX _B|X |

it it and n,ftx are conditional probabilities that the respondent in latent

class t responds with 0 or 1 for each manifest indicator variable



LCA Parameterizations

* To obtain the loglinear form of the model, take the natural log of the
probabilistic model

(™) = A+ A + A 427 + AL +2 + AR+ 25

* Includes only the higher-order terms that include the latent variable

* No interaction terms (e.g., A{j{* = 0) because the model specifies

conditional independence (McCutcheon, 1987; 2002)



LCA Parameterizations

* The two parameterizations are equivalent (Haberman, 1979)
e Same number of parameters
e Same expected values

* Some restrictions can only be imposed in one parameterization

e “Reduced” latent class models
ABCDG___X|G _A|XG _B|XG _C|XG_D|XG g
Tijkis Mg Migs Mjps TMpes Mg Ts

e Test hypotheses using loglinear parameterization
e Use power rules to obtain “reduced” model in loglinear form
e Does conditional independence hold across groups?



Summary

e Loglinear models are an essential method for understanding
categorical data
e Taking the natural log of cell counts yields an ANOVA decomposition

e Log odds of cell sizes
e Convert lambda parameters back into odds and odds ratios

* The two parameterizations permit ANOVA-style decomposition to
contingency tables
e Aid interpretability
e Can estimate equivalent logistic models
e Added flexibility in the types of restrictions that can be imposed
e Conditional independence in latent class analysis models
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