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Causal inference in Social Science Research

e Causal inference of programs, interventions, and
policies
* Interested in answering questions if programs and policies
are “effective” in improving outcomes

e “Can subsidized employment programs help
disadvantaged job seekers?”

* “Can after school programs improve student social- and
emotional, behavioral, and academic outcomes?”

 Randomized controlled trials (RCT)—"Gold Standard”

* Could be neither feasible nor ethical to implement in
practice




Regression Discontinuity Designs (RDD)

* A strong alternative to the RCT where a cutoff-based
assignment of individuals is used

* Subjects are assigned to either the treatment or control
condition based on a cutoff score on an assignment variable
 Summer school reading programs
e US minimum legal age of for drinking alcohol is 21

 When treatment is effective, a discontinuity in the regression
relationship between assignment variable and outcome
variable occurs at the cutoff

* OQutcome; = by+ b, (assignment score,) + b, (treatment;) + r;
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Causal Inference in RDD

* Treatment assignment is completely known and
statistically modeled
* Selection bias is controlled

 Local randomization at the cutoff

* Participants just above and below the cutoff are assumed
to be identical, except in terms of the treatment
assignment

 RDD assumptions are critical to prove this

* Produces unbiased causal estimate at the cutoff




Causal Inference in RDD
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Causal Estimand of Interest in RDD

The treatment effect is the difference in the potential
outcomes at the cutoff:

Turec) = ElY()-Y,(0)IZ =2]

=E[Y()|Z =2 ]1-E[Y,(0)|Z, =z]
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Advantage & Utility of RDD

* Allows the estimation of unbiased causal estimates at the
cutoff in the design

* due to the completely known selection process and local
randomization occurring at the cutoff)

e RDD causal estimates are as robust as those from RCT

* Enables program administrators to target those who are most
in need of treatment

* Widely used in social science research evaluating a non-
random, cut-off based programs and policies




RDD Assumptions
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RDD Assumptions

1. Treatment assignment is measured and determined by a

clearly known rule

e Unitiis assignment to treatment condition if the unit scores below
the cutoff (Z,=1 if X; < c¢), condition

* Unitiis assignment to control condition if the unit scores above the
cutoff (Z=01if X;=c)

2. No alternative explanations for the treatment effect except
through the treatment at the cutoff
* Evidence of local randomization at the cutoff

* Covariate balance at the cutoff, continuity of density at the cutoff (no
manipulation of the treatment assignment)




RDD Modeling and Analysis
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Types of RDD

* Sharp RDD: No non-compliance

* Fuzzy RDD: Non-compliance (no-shows, cross-
overs)
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Steps for RDD Modeling and Analysis

. Assumption tests

Parametric analysis

Non-parametric analysis

Graphical analyses are utilized in steps 1-3

s W e

Examine the results from multiple analyses
all together (steps 1-4)
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Components of RDD

e What is needed?

Components Example

Assignment variable Poverty score (composite)
Outcome variable State test score

Condition variable After school program (Yes or No)
Cut-score 25/100
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Step 1: Assumption Test #1

* Assumption # 1: Treatment treatment assignment
assignment is measured and
determined by a clearly
known rule

* Conditional probability of
receiving the treatment
jumps from O to 1 (or vise
versa) at the cutoff
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Step 1: Assumption Test #2

* Assumption # 2: No alternative explanations for the
treatment effect except through the treatment at the cutoff

e Covariate balance test

* No discontinuity in the potential outcomes (i.e., covariates)

* Run a series of RD regressions with the baseline covariates

* Cov; = fo + BiTreatment; + B, f (Assign); + B3Treatment; X
f(Assign); + €;

* Create a series of scatterplots for the baseline covariates using

nonparametric regression to model the relationship between the
assignment variable and the outcome.
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Step 1: Assumption Test #2

e Covariate balance plots

Receives free lunch Female Home Language is English
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Step 1: Assumption Tests #2

* Assumption # 2: No alternative explanations for the
treatment effect except through the treatment at the cutoff

* Density test (aka. Sorting test)

Evaluates if there is manipulation of the assignment process
Assesses significant difference in number of observations at the cutoff

No discontinuity in the density of assignment variable at the cutoff
McCrary’s Density Test (2008)

0 = In liinf(r)—ln li%nf(r)zlan“—lnf_.

6 = log-difference in the height of each density function




Density Estimate
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Step 1: Assumption Test #2

Density test example
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Step 2: Parametric Analysis of the RDD

 Asimple linear regression
T = Treatment indicator,

Yi =a+ BO ) Ti + Bi " + =5 r = Assignment variable
* |dentify the best fitting model: F-test, AlIC, BIC, LRT

1. linear i=a+foTi+pints

2. linear interaction Yi=a+ By T:+pfy 1+ Lo 7" T: +&;

3. quadratic Vi=a+BoTi+p-ni+he1+s

4. quadraticinteraction Y, =a+ By T+ By 1+ P17 + B3 1T+ Pa-
riz T; + &

3. cubic Yi=a+Bo Ti+Bi mi+Br’+B:7 +

6. cubic interaction Y,=a+ By T, +By 1+ B, i+ By 12+p, 1,

Ti+35‘7'[-2' Ti+BG‘Ti3'Ti+Si

» Specification of the correct functional form is the key
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Step 2: Parametric Analysis of the RDD

» Specification of the correct functional form is the key

Assignment Variable Scores

Assignment Variable Scores
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Step 2: Parametric Analysis of the RDD

» Specification of the correct functional form is the key

False Regression Discontinuity Effect Due to Nonlinearity .
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Step 3: Nonparametric Analysis of the RDD

* Flexible for accommodating nonlinear relationship
* Local linear/polynomial regression is most commonly used in
the literature

1) Identify “optimal bandwidth” —a width of window where
regressions are fitted

Control Treatment

3
~
~
~

N
N
\\ A
'
Outcome AN ;B
~ ~
~ ~
~ ~
: \
\\
A’

B \\ Curve C

bandwidth | bandwidth™

h

————h— >

Cut-point




26

Step 3: Nonparametric Analysis of the RDD

* Local linear/polynomial regression

2) Determine “kernel weights”
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Step 3: Nonparametric Analysis of the RDD

* Local linear/polynomial regression

3) Regressions are fitted separately for observations on the left or

right side of the cutoff.

—

Y=o + F(X—c)+e,

wherec — h <X < ¢,

Outcome

r=a, + 3, X—c) + ¢, N

wherec < X<c¢ + h. 21
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Step 5: Convergence of Results

e Do the results from graphical, parametric, and
nonparametric analyses converge in terms of
direction and magnitude of the RD treatment effect?
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Demonstration
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RDD Analytic Software Packages

* R: rdrobust, rddensity, rdplot, rdd, RDDtools,
mgcv (gam), rddapp

 Stata: Ipoly (local polynomial regression),
rdrobust,rddensity, rdplot
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Dataset

e Simulated dataset
* Treatment: Summer reading program

* Assignment variable: Composite standard score on a
CBM reading assessment

 Qutcome: State English Language Arts test score
e Cutoff=0
 Sample: N=810
e (Treatment n =425, Control n = 385)
* R package: rdrobust (calonico et al., 2015)
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Step O: Explore the Data

* Summary statistics

> # 111 summary statistics i
» library(dplyr)
> readhyi
+ select(posttest, assign, treatment)ik
t  describe()

vars n mean  sd median trimmed mad min  max range
posttest 1 810 207.13 33.13 204.00 206.83 34.10 52.00 308.00 256.00
assign 2810 -0.02 0.67 -0.03 -0.02 0.63 -2.54 2,14 4,68
stluid 3 810 405.50 233.97 405.50 405,50 300.23 1.00 810.00 809.00
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Step O: Explore the Data

Histogram of read$assign
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Step O: Explore the Data
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Step 1: Assumption Test

* Assignment Rule

treatment assignment

# ::::: check the assignment 2 o o coomoeo cmmmmm—
variable and assignment rule :::::
plot(read$assign, read$treatment, =
main = "treatment assignment")
> abline(v = 0, 1ty = 2) B S
S -  ——
) ! 0 1' 4




Step 3: Assumption Test-Covariate Balance

> summary(rdrobust(read$lep, read$assign, all=TRUE))
Call: rdrobust

Number of Obs. 810
BW type mserd
Kernel Triangular
VCE method NN
Number of Obs. 425 385
Eff. Number of Obs. 186 159
Order est. (p) 1 1
Order bias (q) 2 2
BW est. (h) 0.361 0.361
BW bias (b) 0.638 0.638
rho (h/b) 0.566 0.566
Unique Obs. 422 382
Method Coef. Std. Err z P>|z| [ 95% C.I. ]
Conventional -0.056 0.095 -0.586 0.558 [-0.242 , 0.131]
Bias-Corrected -0.081 0.095 -0.855 0.392 [-0.268 , 0.105]

Robust -0.081 0.112 -0.726 0.468 [-0.301 , 0.138]




Step 3: Assumption Test-Covariate Balance

> summary(rdrobust(read$sped, read$assign, all=TRUE))
Call: rdrobust

Number of Obs. 810
BW type mserd
Kernel Triangular
VCE method NN
Number of Obs. 425 385
Eff. Number of Obs. 226 197
Order est. (p) 1 1
Order bias (q) 2 2
BW est. (h) 0.449 0.449
BW bias (b) 0.736 0.736
rho (h/b) 0.610 0.610
Unique Obs. 422 382
Method Coef. Std. Err z P>|z] [ 95% C.I. ]

Conventional 9.092 0.057 1.600 0.110 [-0.021
Bias-Corrected 9.096 0.057 1.665 0.096 [-0.017 , ©.208]
[-0.036

Robust 0.096 0.067 1.421 0.155




Step 2: Assumption Test — Sorting Tes?”c8

> #Sorting Around the Cutoff (McCrary Test)#
> summary(rddensity(X = read$assign))

RD Manipulation Test using local polynomial density estimation.

Density Test

Number of obs = 810

Model = unrestricted

Kernel = triangular

BW method = comb 075
VCE method = jackknife

Cutoff c = 0 Left of ¢ Right of ¢
Number of obs 425 385 20501
Eff. Number of obs 229 181 8
Order est. (p) 2 2

Order bias (q) 3 3 -
BW est. (h) 0.454 0.411

Method T P> |T|

Robust -0.6656 0.5057 0.001

2 -1 0 1 2
assignment score
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Step 3: Parametric Analysis

# ::::: parametric analysis :::::

summary (outl.1lm <- Im(posttest ~ treatment*assign, data = read)) # linear mode.
summary(out2.1lm <- lm(posttest ~ treatment*(assign + I(assign”2)), data = read)) # quadratic
summary(out3.1lm <- Im(posttest ~ treatment*(assign + I(assign”2) + I(assign”3)), data = read))
anova(outl.lm, out2.1lm, out3.1lm)

AIC(outl.1lm, out2.1lm, out3.1lm)

> anova(outl.lm, out2.1lm, out3.1m)
Analysis of Variance Table

Model 1: posttest ~ treatment * assign
Model 2: posttest ~ treatment * (assign + I(assign”2))
Model 3: posttest ~ treatment * (assign + I(assign”2) + I(assign”3))
Res.Df RSS Df Sum of Sq F Pr(>F)
1 806 871233
2 804 870011 2 1222.7 ©.5682 0.56675
3 802 862818 2 7192.8 3.3429 0.03583 *
Signif. codes: © “***’ 9,001 “**’ 9.01 ‘*’ ©0.05 ‘.’ 0.1 <’ 1
> AIC(outl.1lm, out2.1lm, out3.1m)
df AIC

outl.lm 5 7962.991
out2.1lm 7 7965.854
out3.1lm 9 7963.129
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Step 3: Parametric Analysis

# ::::: parametric analysis :::::

summary (outl.1lm <- Im(posttest ~ treatment*assign, data = read)) # linear mode.
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summary(out3.1lm <- Im(posttest ~ treatment*(assign + I(assign”2) + I(assign”3)), data = read))
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Model 2: posttest ~ treatment * (assign + I(assign”2))
Model 3: posttest ~ treatment * (assign + I(assign”2) + I(assign”3))
Res.Df RSS Df Sum of Sq F Pr(>F)
1 806 871233
2 804 870011 2 1222.7 ©.5682 0.56675
3 802 862818 2 7192.8 3.3429 0.03583 *
Signif. codes: © “***’ 9,001 “**’ 9.01 ‘*’ ©0.05 ‘.’ 0.1 <’ 1
> AIC(outl.1lm, out2.1lm, out3.1m)
df AIC
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out2.1lm 7 7965.854
out3.1lm 9 7963.129




Step 3: Parametric Analysis

e Parametric Results

41

Call:
Im(formula = posttest ~ treatment * (assign + I(assign”2) + I(assign”3)),
data = read)
Residuals:
Min 1Q Median 3Q Max 3 | ° °
-147.61 -20.95 -2.12 21.64 104.66 " I o |
Coefficients: 2 S - mm:c‘?&::?wn_;_ _____ -
Estimate Std. Error t value Pr(>|t]) ° P = B4, ot B Looe
(Intercept) 197.936 5.135 38.544 <2e-16 *** g
treatment 13.653 6.609 2.066 0.0392 * 5 &1
assign 64.840 26.688 2.430 0.0153 * %
I(assign”2) -88.490 36.273 -2.440 0.0149 * - g |
I(assign”3) 34.842 13.659 2.551 0.0109 * -
treatment:assign -51.882 33.536 -1.547 0.1222 ° °
treatment:I(assign”2) 84.527 44.070 1.918 ©.0555 . g
treatment:I(assign”3) -38.341 15.971 -2.401 0.0l166 *
Signif. codes: © ‘***’ @9.,001 “**’ 9.01 “*’ ©0.05 “.” 0.1 ¢’ 1 2 | ° . i | |
-2 -1 0 1 2
Residual standard error: 32.8 on 802 degrees of freedom assign
Multiple R-squared: ©0.02849, Adjusted R-squared: ©0.02001

F-statistic:

3.36 on 7 and 802 DF,

p-value: 0.001541

ooom—:D—mo °
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Step 4: Nonparametric Analysis

> # Local Polynomial Regression#
> summary(rdrobust(y = read$posttest, x = read$assign, all = TRUE))
Call: rdrobust

Number of Obs. 810
BW type mserd
Kernel Triangular
VCE method NN
Number of Obs. 425 385
Eff. Number of Obs. 194 164
Order est. (p) 1 1
Order bias (q) 2 2
BW est. (h) 0.374 0.374
BW bias (b) 0.627 0.627
rho (h/b) 0.595 0.595
Unique Obs. 422 382
Method Coef. Std. Err z P>|z]| [ 95% C.I. ]
Conventional -14.469 7.244 -1.997 0.046 [-28.667 , -0.270]
Bias-Corrected -16.639 7.244 -2.297 0.022 [-30.837 , -2.440]

Robust -16.639 8.441 -1.971 0.049 [-33.184 , -0.094]
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Step 4: Nonparametric Analysis

RD Plot

Treatment Control

posttest reading score




Step 5: Cross-check the Results
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Model Treatment effect (SE)
Linear regression 4.61 (3.77)
Quadratic regression 6.33 (5.19)

Cubic regression™

13.65 (6.61)*

Local linear regression
(conventional)

14.47 (7.24)*

Local linear regression
(robust, bias-corrected)

16.65 (8.44)*
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Limitations of RD

* Lower statistical power than a comparable RCT

e Due to the correlation between the treatment status indicator and the
assignment variable

* RD requires a sample size between 2.75 and 4 times greater than that
of a comparable RCT to detect the same treatment effects

* Strong reliance on correct modeling of the assignment variable-
outcome relationship

* If researchers modeled a linear function when the true function for
the hypothesized relationship is not linear (e.g., curvilinear), they
might find an artifactual discontinuity at the cutoff

* Limited generality of causal inference
e Causal inference in basic RD is limited to the small area surrounding

the cutoff
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Conclusion

 RDD enables the ethical delivery of programs and
policy in social science research.

 RDD vyields unbiased causal estimate at the cutoff.
e Assumption tests are crucial.

 RDD requires a large sample.

* Large sample at the cutoff matters.

e Cross-check the results from different types of RD
analyses (i.e., parametric, non-parametric, and
graphical analyses).

N MAP ACADEMY



47

RDD Extensions

e RDD variants to improve generality of RD estimate
beyond the cutoff/also improve powers

e Comparative RDD (using pretest scores or non-equivalent
groups)

 RDD with covariate matching
* Multiple-cutoff RDD




Questions?
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Thank you!
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Fuzzy RDD

 Non-compliance!
* Wald Estimator approach
mElY, | Z =z, ]— 11mE[Y|Z =z ]

LATE, . = 2=
¢ imE[D, | Z, =z,]~ hmE[D 1Z =z]

* Two-state Ieast squares (ZSLS) approach
* Firststage: Treated. = B, + p,Treatment. + §,g(AVAR). + ¢,
* Secondstage: y = g + 3 Beated; + B,/ (AVAR), +u.




