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Missing Data Mechanisms



Patterns Versus Mechanisms

The missing data pattern describes the configuration 
of observed and the missing values in a data set 

The pattern describes the location of the “holes” in 
the data but says nothing about the reasons for 
missingness 

The mechanism describes how the propensity for 
missing data is related to other variables, if at all



General Missing Data Patterns

A general pattern describes 
missing values that are dispersed 
throughout the data matrix 

Missingness may or may not be 
systematic 

The methods we focus on can 
handle general patterns
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Missing Data Mechanisms

Mechanisms describe how the probability of a 
missing value on Y relates to other variables or to 
the would-be values of Y itself (Rubin, 1976) 

Missing completely at random (MCAR) 

Missing at random (MAR) 

Not missing at random (NMAR)



20 chronic pain patients 
enrolled in a pain 
management program 

Respondents fill out pain 
severity and depression 
questionnaires

Motivating 
Example

Pain 
Severity

Depression

4 11

6 19

7 14

7 11

8 6

9 7

9 11

10 12

10 16

11 9

12 9

14 14

14 16

14 21

15 14

16 14

16 18

17 19

18 21

23 18



Missing Completely At Random ( Mcar )

MCAR = no systematic predictors of missingness 

The probability of missing data on a variable Y is 
unrelated to other measured variables and is 
unrelated to the would-be values of Y 

The observed scores are a random sample of the 
hypothetically complete data set



MCAR requires that the 
probability of a missing 
depression score is unrelated 
to pain severity and to the 
unseen depression values 

Nothing predicts missingness

Pain 
Severity

Depression 
(Hypothetical)

Depression 
(Observed)

4 11 ?
6 19 19

7 14 ?
7 11 11

8 6 6

9 7 7

9 11 11

10 12 ?
10 16 16

11 9 9

12 9 9

14 14 14

14 16 16

14 21 21

15 14 14

16 14 ?
16 18 18

17 19 19

18 21 21

23 18 ?

MCAR  
Example



Missing At Random ( Mar )

MAR = missingness predicted by observed scores 

The probability of missing data on Y is related to 
other measured variables but is unrelated to the 
would-be values of Y  

Scores are randomly missing after we control for the 
observed data



Patients with mild pain are 
more likely to refuse the 
depression measure 

MAR requires that 
missingness is unrelated 
to the unseen depression 
values after controlling for 
observed severity scores

Pain 
Severity

Depression 
(Hypothetical)

Depression 
(Observed)

4 11 ?
6 19 ?
7 14 14

7 11 11

8 6 ?
9 7 ?
9 11 11

10 12 ?
10 16 16

11 9 9

12 9 9

14 14 14

14 16 16

14 21 21

15 14 14

16 14 14

16 18 18

17 19 19

18 21 21

23 18 18

MAR  
Example



Not Missing At Random ( Nmar )

NMAR = missingness predicted by unseen scores 

The probability of missing data on Y is related to Y 
after controlling for other observed variables 

Latent (unobserved) values determine missingness



Participants with low 
depression scores are 
more likely to skip the 
depression measure 

Unseen depression scores 
determine missingness, 
even after accounting for 
pain severity

Pain 
Severity

Depression 
(Hypothetical)

Depression 
(Observed)

4 11 11

6 19 19

7 14 14

7 11 ?
8 6 ?
9 7 ?
9 11 11

10 12 12

10 16 16

11 9 ?
12 9 ?
14 14 14

14 16 16

14 21 21

15 14 14

16 14 14

16 18 18

17 19 19

18 21 21

23 18 18

NMAR  
Example



Diagram Of Mechanisms

PMISS = probability of missing data, Z = variables 
uncorrelated with SEV and DEP

SEV

PMISSDEP

Z SEV

PMISSDEP

Z SEV

PMISSDEP

Z

MCAR MAR NMAR



Why Do Mechanisms Matter?

Mechanisms are analysis assumptions 

Deleting incomplete cases require MCAR 

Modern approaches assume MAR (or MCAR) 

Estimates are biased when assumptions are violated



Complete-data means 

MSEV = 12.00 

MDEP = 14.00  

Use these values to 
evaluate analyses under 
different mechanisms

Analysis 
Example

Pain 
Severity

Depression

4 11

6 19

7 14

7 11

8 6

9 7

9 11

10 12

10 16

11 9

12 9

14 14

14 16

14 21

15 14

16 14

16 18

17 19

18 21

23 18



Complete-case (n = 15) 

MSEV = 12.00 

MDEP = 14.07 

Maximum likelihood (N = 20) 

MSEV = 12.00 

MDEP = 14.07

MCAR 
Example

Pain 
Severity

Depression 
(MCAR)

4 ?
6 19

7 ?
7 11

8 6

9 7

9 11

10 ?
10 16

11 9

12 9

14 14

14 16

14 21

15 14

16 ?
16 18

17 19

18 21

23 ?



Complete-case (n = 15) 

MSEV = 13.53 

MDEP = 15.00 

Maximum likelihood (N = 20) 

MSEV = 12.00 

MDEP = 14.15

MAR  
Example

Pain 
Severity

Depression 
(MAR)

4 ?
6 ?
7 14

7 11

8 ?
9 ?
9 11

10 ?
10 16

11 9

12 9

14 14

14 16

14 21

15 14

16 14

16 18

17 19

18 21

23 18



Complete-case (n = 15) 

MSEV = 12.87 

MDEP = 15.87 

Maximum likelihood (N = 20) 

MSEV = 12.00 

MDEP = 15.57

NMAR  
Example

Pain 
Severity

Depression 
(NMAR)

4 11

6 19

7 14

7 ?
8 ?
9 ?
9 11

10 12

10 16

11 ?
12 ?
14 14

14 16

14 21

15 14

16 14

16 18

17 19

18 21

23 18



The Problem With MAR

MAR-based methods (maximum likelihood) are 
clearly preferable to methods that assume MCAR 
(deletion) but NMAR mechanisms still introduce bias 

We cannot use the data to test MAR vs. NMAR 

Mechanisms make different propositions about the 
unseen values



Testing Mechanisms ( Not Really )

Researchers often examine differences between 
completes and dropouts 

Create a missing data indicator for each variable (0 
= complete, 1 = missing) and examine mean 
differences on or correlations with other variables 

This strategy can rule out MCAR but says nothing 
about MAR vs. NMAR mechanisms



MComp = 12.00, MMiss = 12.00 

Absence of differences 
suggest that severity does 
not predict missingness 

MCAR is supported

Pain 
Severity

Depression 
(MCAR)

Missingness 
Indicator

4 ? 1

6 19 0

7 ? 1

7 11 0

8 6 0

9 7 0

9 11 0

10 ? 1

10 16 0

11 9 0

12 9 0

14 14 0

14 16 0

14 21 0

15 14 0

16 ? 1

16 18 0

17 19 0

18 21 0

23 ? 1

MCAR  
Example



MComp = 13.53, MMiss = 7.40 

Large differences imply 
systematic missingness 
(could be MAR or NMAR) 

MCAR is not plausible

Pain 
Severity

Depression 
(MAR)

Missingness 
Indicator

4 ? 1

6 ? 1

7 14 0

7 11 0

8 ? 1

9 ? 1

9 11 0

10 ? 1

10 16 0

11 9 0

12 9 0

14 14 0

14 16 0

14 21 0

15 14 0

16 14 0

16 18 0

17 19 0

18 21 0

23 18 0

MAR  
Example



MComp = 12.87, MMiss = 9.40 

Large differences imply 
systematic missingness 
(could be MAR or NMAR) 

MCAR is not plausible

Pain 
Severity

Depression 
(NMAR)

Missingness 
Indicator

4 11 0

6 19 0

7 14 0

7 ? 1

8 ? 1

9 ? 1

9 11 0

10 12 0

10 16 0

11 ? 1

12 ? 1

14 14 0

14 16 0

14 21 0

15 14 0

16 14 0

16 18 0

17 19 0

18 21 0

23 18 0

NMAR  
Example



Practical Recommendations

MAR requires logical arguments, cannot be tested 

MAR-based methods are usually a good starting 
point, and including additional auxiliary variables 
can help satisfy the assumption 

NMAR approaches are available but difficult to 
implement and require other tenuous assumptions



Traditional Missing Data 
Handling Methods



Common Approaches

Deletion (listwise and pairwise) 

Mean imputation 

Regression imputation 

Averaging the available items (questionnaire data)



20 chronic pain patients 
enrolled in a pain 
management program 

Patients with mild pain 
are more likely to 
refuse the depression 
measure

Motivating 
Example

Pain 
Severity

Depression

4 ?
6 ?
7 14

7 11

8 ?
9 ?
9 11

10 ?
10 16

11 9

12 9

14 14

14 16

14 21

15 14

16 14

16 18

17 19

18 21

23 18



Complete-Data Scatterplot
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Listwise deletion removes all incomplete data 

Pairwise deletion eliminates data on an analysis-by-
analysis basis (correlations based on different Ns) 

Discarding data reduces power, and deletion 
estimates are accurate only with MCAR mechanisms

Deletion Methods



Deletion Scatterplot
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Mean imputation replaces (imputes) missing values 
with the average of the available scores 

Variability and correlations are attenuated because 
the imputations are constant 

Estimates are biased under any mechanism 

Mean imputation is the worst possible option

Mean Imputation



Mean Imputation
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Mean Imputation Scatterplot
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Imputed Values

R2 = 0
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Regression imputation replaces missing values with 
predicted scores from a regression equation where 
complete variables predict incomplete variables 

The filled-in data lack variability because the 
imputed values fall directly on a regression line 

Measures of variation and association are biased

Regression Imputation



Regression Imputation Scheme
D

e
p

re
ss

io
n

0

2

4

6

8

10

12

14

16

18

20

22

24

Pain Severity

0 2 4 6 8 10 12 14 16 18 20 22 24

Depress = β1(Severity) + β0
^

Y
^



D
e

p
re

ss
io

n

0

2

4

6

8

10

12

14

16

18

20

22

24

Pain Severity

0 2 4 6 8 10 12 14 16 18 20 22 24

Regression Imputation Scatterplot



Imputed Values
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Averaging Available Items ( Proration )

Many analyses involve scales scores that sum or 
average a set of questionnaire items 

Researchers often compute prorated scale scores 
scales by averaging the available items 

Equivalent to imputing values with a person’s mean



ID Q1 Q2 Q3 Scale

1 1 2 1 1.3

2 5 ? 4 4.5

3 3 2 4 3.0

4 ? 3 ? 3.0

ID Q1 Q2 Q3 Scale

1 1 2 1 1.3

2 5 4.5 4 4.5

3 3 2 4 3.0

4 3 3 3 3.0

Prorated scale score Person-mean Imputation

Example



Issues With Proration

Proration can work well if the mechanism is MCAR 
and the item means and inter-correlations are equal 

Different item distributions introduce severe biases 

Requires stricter conditions than deletion



Maximum Likelihood Estimation 
For Missing Data



20 chronic pain patients 
enrolled in a pain 
management program 

Use maximum likelihood 
to estimate the 
depression mean

Motivating 
Example

Pain 
Severity

Depression

4 11

6 19

7 14

7 11

8 6

9 7

9 11

10 12

10 16

11 9

12 9

14 14

14 16

14 21

15 14

16 14

16 18

17 19

18 21

23 18



MAXIMUM LIKELIHOOD ( ML ) ESTIMATION

ML identifies the population parameter values that 
are most consistent with the raw data 

A likelihood (or log likelihood) function quantifies the 
fit of the data to the parameters 

ML requires a population distribution (normal)



PROBABILITY DENSITY FUNCTION

A density function gives the shape of the normal curve 

Li (the likelihood) gives the relative probability that Yi 
came from a normal distribution with a particular 
mean and variance

L
i
=

1

2πσ2
e −.5

(Y
i
−µ)2

σ2

$

%
&
&

'

(
)
)



SIMPLIFYING THE LIKELIHOOD

The likelihood value is largely driven by a squared z 
score to the right of the exponent 

Small z score = high likelihood (probability) = close 
match between the data and the parameters (Y and µ)

L
i
=

1

2πσ2
e −.5

(Y
i
−µ)2

σ2
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%
&
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)
)



LIKELIHOOD EXAMPLE

Consider depression scores of Yi = 12 and 9 and a 
normal distribution with µ = 14 and σ = 4.37 

Substituting parameters and scores into the density 
function gives L12 = .0822 and L9 = .0474 

The Li values quantify the relative probability of 
obtaining each score from this normal distribution
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µ = 14 and σ = 4.37 

Smaller deviations 
between a score and 
the mean produce 
higher likelihood values 

Higher likelihood values 
reflect a better fit to the 
population parameters

Depression Likelihood

6 0.0171

7 0.0253

9 0.0474

9 0.0474

11 0.0721

11 0.0721

11 0.0721

12 0.0822

14 0.0913

14 0.0913

14 0.0913

14 0.0913

16 0.0822

16 0.0822

18 0.0600

18 0.0600

19 0.0474

19 0.0474

21 0.0253

21 0.0253

Example



JOINT PROBABILITY

From probability theory, the joint probability for a set 
of events is the product of individual probabilities 

e.g., The probability of jointly observing two heads is 
(.50)(.50) = .25 

Likelihood values are not probabilities, but the same 
rules apply



SAMPLE LIKELIHOOD

The sample likelihood is the product of the individual 
likelihoods 

∏	is the multiplication operator

L=
1

2πσ2
e −.5

(y
i
−µ)2
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EXAMPLE

Multiplying likelihoods gives the sample likelihood 

The sample likelihood quantifies the relative 
probability of obtaining these 20 scores from a 
normal population with µ = 14 and σ = 4.37

L = (.0171)(.0253) ... (.0253)(.0253)

= .00000000000000000000000007327



LOGARITHMS

Likelihoods are computationally difficult and 
introduce precision problems due to rounding error  

One rule of logarithms is log[(a)(b)] = log(a) + log(b) 

Using logarithms converts a multiplication problem 
to an addition problem (simpler math)



LOG LIKELIHOOD VALUES

logLi is the natural logarithm of a single likelihood 

The logLi values also quantify relative probability, 
but they do so on a different metric

logL
i
= log

1

2πσ2
e −.5

(y
i
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µ = 14 and σ = 4.37 

Smaller deviations 
between a score and the 
mean produce higher 
log likelihood values 

Higher log likelihood 
values reflect a better fit 
to the parameters

Depression Likelihood logL

6 0.0171 -4.0692

7 0.0253 -3.6765

9 0.0474 -3.0482

9 0.0474 -3.0482

11 0.0721 -2.6294

11 0.0721 -2.6294

11 0.0721 -2.6294

12 0.0822 -2.4985

14 0.0913 -2.3938

14 0.0913 -2.3938

14 0.0913 -2.3938

14 0.0913 -2.3938

16 0.0822 -2.4985

16 0.0822 -2.4985

18 0.0600 -2.8126

18 0.0600 -2.8126

19 0.0474 -3.0482

19 0.0474 -3.0482

21 0.0253 -3.6765

21 0.0253 -3.6765

Example



GRAPHIC

Depression
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L12 = .0822 
logL12 = -2.499

L9 = .0474 
logL9 = -3.048



SAMPLE LOG LIKELIHOOD

The sample log likelihood is the sum of the 
individual log likelihoods 

The equation says to (a) compute the likelihood for 
each case, (b) take the natural log of each value, 
and (c) sum the individual log likelihoods

logL= log
1

2πσ2
e −.5
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EXAMPLE

Adding logLi values gives the sample log likelihood 

The sample log likelihood quantifies the relative 
probability of obtaining these 20 scores from a 
normal population with µ = 14 and σ = 4.37

logL = (-4.0692) + (-3.6765) + ... + (-3.6765) = -57.8757



INTERPRETING THE LOG LIKELIHOOD

The log likelihood quantifies the fit between the 
sample data and the population parameters 

No absolute criterion for a good or a bad value 

The logL depends on the sample size, number of 
variables, number of parameters in the model, 
missing data, etc.



ESTIMATION STRATEGY

The sample log likelihood provides a mechanism for 
identifying unknown parameter values 

Compute the log likelihood for different values of µ 

Identify the value of µ that produces the highest log 
likelihood (highest probability, best fit to the data)



POPULATION µ = 12

Depression logL

14 -2.498

14 -2.498

16 -2.813

16 -2.813

18 -3.336

18 -3.336

19 -3.677

19 -3.677

21 -4.514

21 -4.514

Depression logL

6 -3.336

7 -3.048

9 -2.629

9 -2.629

11 -2.420

11 -2.420

11 -2.420

12 -2.394

14 -2.498

14 -2.498

logL = (-3.336) + (-3.048) + ... + (-4.514) + (-4.514) = -59.967



POPULATION µ = 13

Depression logL

14 -2.420

14 -2.420

16 -2.629

16 -2.629

18 -3.048

18 -3.048

19 -3.336

19 -3.336

21 -4.069

21 -4.069

Depression logL

6 -3.677

7 -3.336

9 -2.813

9 -2.813

11 -2.498

11 -2.498

11 -2.498

12 -2.420

14 -2.420

14 -2.420

logL = (-3.677) + (-3.336) + ... + (-4.069) + (-4.069) = -58.399



POPULATION µ = 14

Depression logL

14 -2.394

14 -2.394

16 -2.499

16 -2.499

18 -2.813

18 -2.813

19 -3.048

19 -3.048

21 -3.677

21 -3.677

Depression logL

6 -4.069

7 -3.677

9 -3.048

9 -3.048

11 -2.629

11 -2.629

11 -2.629

12 -2.499

14 -2.394

14 -2.394

logL = (-4.069) + (-3.677) + ... + (-3.677) + (-3.677) = -57.876



POPULATION µ = 15

Depression logL

14 -2.420

14 -2.420

16 -2.420

16 -2.420

18 -2.629

18 -2.629

19 -2.813

19 -2.813

21 -3.336

21 -3.336

Depression logL

6 -4.514

7 -4.069

9 -3.336

9 -3.336

11 -2.813

11 -2.813

11 -2.813

12 -2.629

14 -2.420

14 -2.420

logL = (-4.514) + (-4.069) + ... + (-3.336) + (-3.336) = -58.399



µ = 14 maximizes the 
probability of sampling 
these 20 cases 

µ = 14 is the maximum 
likelihood estimate

Population 
Mean

logL

12 -59.967

13 -58.399

14 -57.876

15 -58.399

ESTIMATION SUMMARY



LOG LIKELIHOOD FUNCTION
The log likelihood function describes how the sample 
log likelihood changes between µ  values of 4 and 24

Lo
g

 L
ik

e
lih

o
o

d

Population Mean
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-76.72

-66.25
-59.97

-57.88

-91.38



Multivariate normal distribution 

Li is the relative probability of a set of Y values, 
given the parameter estimates in µ and Σ

MULTIVARIATE NORMAL DISTRIBUTION

L
i
=

1

(2π)k/2 Σ
.5
e −.5(Y

i
−µ )TΣ−1 (Y

i
−µ )$

%
&
'



SIMPLIFYING THE LIKELIHOOD

The multivariate likelihood value is still driven by a 
squared z score to the right of the exponent 

Small z score = high likelihood (probability) = close 
match between the data and the parameters (Y and µ)

L
i
=

1

(2π)k/2 Σ
.5
e −.5(Y
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−µ )TΣ−1 (Y

i
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LIKELIHOOD EXAMPLE

Two pairs of depression and severity scores and 
parameters fixed at their sample values 

Substituting parameters and scores into the density 
function gives L1 = .0268 and L2 = .0067

Y
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The log likelihood quantifies relative probability, but 
on a different metric (same as before)

MULTIVARIATE NORMAL LOG LIKELIHOOD

logL
i
= log

1

(2π)k /2 Σ
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i
−µ )TΣ−1 (Y
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−µ )$
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MISSING DATA LOG LIKELIHOOD

Complete-data log likelihood

logL
i
= −

k
2
log(2π)−

1
2
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1
2
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i
−µ )TΣ−1 (Y

i
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Missing-data log likelihood



WHAT IS DIFFERENT?

The missing data log likelihood has an i (individual) 
subscript on µ and Σ 

The subscript indicates that the number of 
parameters in the matrices depends on the missing 
data pattern 

The squared z score is computed using all available 
data and the parameters for which a case has data



20 chronic pain patients 
enrolled in a pain 
management program 

Patients with mild pain are 
more likely to refuse the 
depression measure

Pain Data
Pain 

Severity
Depression

4 ?
6 ?
7 14

7 11

8 ?
9 ?
9 11

10 ?
10 16

11 9

12 9

14 14

14 16

14 21

15 14

16 14

16 18

17 19

18 21

23 18



COMPLETE-DATA CALCULATIONS

The squared z score for the 15 complete cases uses 
the entire collection of parameters
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EXAMPLE

Squared z score computation for the case with 
severity and depression scores of 7 and 11
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MISSING-DATA CALCULATIONS

The squared z score for the 5 incomplete cases uses 
only the severity parameters
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EXAMPLE

Squared z score computation for the case with a 
severity score of 10 and a missing depression score

z2 =
(Y

i
−µ

i
)2

σ
i
2

=
(10− 12)2

21.4
= .187



HOW DOES THIS HELP?

Maximum likelihood uses all available data to 
estimate parameters 

The procedure can be viewed as implicit imputation 
because the observed data imply plausible values 
for the missing scores 

The normal distribution is key because it defines a 
range of plausible scores for the missing data
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Conditional Distribution

Parenting

12 14 16 18 2010864

Depression

Distribution of plausible depression scores for a case 
with a severity score of 8



Parenting

12 14 16 18 2010864

Depression

Implicit Imputation
Given a severity score of 8, the most likely value of 
the missing depression scale is ≈ 12

Depression ≈ 12 | Severity = 8 



What Happens To The Mean?

The complete cases produced an depression 
average of 15 (too high relative to the true estimate) 

A case with an severity = 8 should have a parenting 
score of roughly 12 

Adjusting the mean downward to account for the 
plausible (but missing) value brings the estimate 
closer to its true value of 14
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Conditional Distribution

Parenting

12 14 16 18 2010864

Depression

Distribution of plausible depression scores for a case 
with a severity score of 10



Implicit Imputation

Parenting

12 14 16 18 2010864

Depression

Given a severity score of 10, the most likely value of 
the missing depression scale is ≈ 13

Depression ≈ 13 | Severity = 10 



What Happens To The Mean?

The complete cases produced an depression 
average of 15 (too high relative to the true estimate) 

A case with an severity = 10 should have a parenting 
score of roughly 13 

Again, adjusting the mean downward to account for 
the plausible (but missing) value brings the estimate 
closer to its true value of 14



ITERATIVE ESTIMATION

Begin with initial guesses about the parameters 

Step 1: “Impute” missing values 

Step 2: Update parameters based on imputations 

Repeat 1 and 2 until estimates no longer change 



ESTIMATION EXAMPLE

Use maximum likelihood to estimate the severity and 
depression means with missing data 

Every combination of the two parameter values 
gives a log likelihood that represents fit to the data 

The goal is to identify the parameter values that 
maximize the log likelihood (and thus fit to the data)



LOG LIKELIHOOD SURFACE

The log likelihood function for multiple parameters is 
a 3D surface that depicts the fit of different 
combinations of parameter values 

The goal of estimation is to climb to the top of the 
surface (identify the highest log likelihood) 

The log likelihood is the altimeter for the climb
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Including the incomplete 
cases gives estimates  
that better match those 
of the complete data 

ML borrows information 
from the severity scores 
to adjust the depression 
estimates

Method
Severity 

Mean
Depression 

Mean

Complete 12.00 14.00

Deletion 13.53 15.00

ML 12.00 14.15

ESTIMATION SUMMARY



Maximum Likelihood  
Estimation In Mplus



Why Sem Software?

General-use software packages have a very limited 
capacity for ML missing data handling 

Missing data is allowed only on outcomes, if at all 

SEM software packages are extremely flexible, and 
any program can implement ML missing data 
handling for a wide variety of analyses



Wisc Data

WISC performance scores from 204 children 

Students were tested in the spring prior to first grade 
(baseline), at the end of first grade (1 year later), at 
the end of 3rd grade (3 years later), and at the end 
of 5th grade (5 years later) 

3rd and 5th grade scores and parent demographics 
are incomplete



Analysis Model And Diagram

Mother’s high school graduation status and 
kindergarten performance predicting 5th grade 
performance

perfo5 =β
0
+β

1
(perfo0)+β

2
(grad)+ε

β1

β2

ε



What Does Mar Require?

Missingness on PERFO5 is completely explained by 
the observed values of PERFO1 or GRAD 

Missingness on GRAD is completely explained by 
the observed values of PERFO1 or PERFO5



Mplus Commands
DATA: specify location of input text file 

VARIABLE: provide variable names, select variables 

DEFINE: create new or modify existing variables 

ANALYSIS: specify estimator and analysis options 

MODEL: specify analysis model 

MODEL TEST: perform custom hypothesis tests 

OUTPUT: control printing options



A Few Mplus Rules
Commands end in : 

Subcommands end in ; 

Capitalization does not matter 

Variable names must be 8 characters or less 

Command lines must be less than 80 characters 

Use ! to specify a line that the program ignores



Ml Ex 1A - Regression.Inp

DATA: 
file = wisc.dat; 
VARIABLE: 
names = id verb0 verb1 verb3 verb5 perfo0 perfo1 perfo3 perfo5 
 info0 comp0 simi0 voca0 info5 comp5 simi5 voca5 momed grad; 
usevariables = perfo0 grad perfo5; 
missing = all(-99); 
ANALYSIS: 
estimator = ml; 
MODEL: 
perfo0 grad; 
perfo5 on perfo0 grad;  
OUTPUT: 
sampstat standardized(stdyx) patterns;



Data Command

The DATA command specifies the location of the 
input data file 

Free format requires spaces, commas, or tabs as 
delimiters and a missing value code

DATA: 
file = ‘/users/craig/desktop/wisc.dat’;



Alternate Data Command

A file path is not required when the Mplus syntax file 
and the data are in the same directory

DATA: 
file = wisc.dat;



Variable Command

The VARIABLE command (a) gives the order of the 
variables in the data file, (b) selects variables for 
analysis, (c) specifies missing value codes, and (d) 
defines special variables (categorical, grouping)

VARIABLE: 
names = id verb0 verb1 verb3 verb5 perfo0 perfo1 perfo3 perfo5 
 info0 comp0 simi0 voca0 info5 comp5 simi5 voca5 momed grad; 
usevariables = perfo0 grad perfo5; 
missing = all(-99);



Analysis Command

Specify estimator and other special analysis options 

Maximum likelihood (ML) is the default (no need to 
specify default options)

ANALYSIS: 
estimator = ml;



Model Command
ON denotes regression, WITH denotes covariance or 
correlation, and BY denotes a factor loading 

A variable name by itself denotes a variance or 
residual variance and a name in [  ] specifies a mean 
or intercept

MODEL: 
perfo5 on perfo0 grad;



Fixed Predictors

In line with OLS regression, Mplus treats predictor 
variables as fixed (no distributional assumptions) 

Missing data handling requires a distribution 

Cases with missing predictor scores are excluded



Analysis Summary
*** WARNING 
  Data set contains cases with missing on x-variables. 
  These cases were not included in the analysis. 
  Number of cases with missing on x-variables:  14 
*** WARNING 
  Data set contains cases with missing on all variables except 
  x-variables.  These cases were not included in the analysis. 
  Number of cases with missing on all variables except x-variables:  47 
   2 WARNING(S) FOUND IN THE INPUT INSTRUCTIONS 

SUMMARY OF ANALYSIS 

Number of groups                                                 1 
Number of observations                                         143 

Number of dependent variables                                    1 
Number of independent variables                                  2 
Number of continuous latent variables                            0



Assigning A Distribution

Specifying variances for the predictors triggers 
Mplus to treat predictors as random variables 

A normal distribution is assumed, even for 
categorical variables 

Necessary evil for missing data handling ….



Revised Model Command

Specifying the variances of the predictors in the 
MODEL command triggers a normal distribution 
assumption and missing data handling for WBEING 
and JOBSAT

MODEL: 
perfo0 grad; 
perfo5 on perfo0 grad;



Underlying Model

Predictor variables are treated as outcomes, and 
isomorphic latent variables replace predictors

β1

β2

ε1

1

1 0

0

0

perfo5

perfo0

grad lgrad

lperf0

lperf5



Analysis Summary

INPUT READING TERMINATED NORMALLY 

SUMMARY OF ANALYSIS 

Number of groups                                                 1 
Number of observations                                         204 

Number of dependent variables                                    1 
Number of independent variables                                  2 
Number of continuous latent variables                            0



Output Command

OUTPUT specifies information for the output file 

SAMPSTAT gives descriptives, STANDARDIZED gives 
beta weights, and PATTERNS prints missing data 
patterns

OUTPUT: 
sampstat standardized(stdyx) patterns;



Missing Data Patterns

SUMMARY OF MISSING DATA PATTERNS 

    MISSING DATA PATTERNS (x = not missing) 

           1  2  3  4 
 PERFO5    x  x 
 PERFO0    x  x  x  x 
 GRAD      x     x 

     MISSING DATA PATTERN FREQUENCIES 

    Pattern   Frequency     Pattern   Frequency     
          1         143           3          47 
          2           9           4           5



Covariance Coverage

The covariance coverage matrix gives the proportion 
of complete data for each variable or variable pair

 PROPORTION OF DATA PRESENT 

           Covariance Coverage 
              PERFO5        PERFO0        GRAD 
              ________      ________      ________ 
 PERFO5         0.745 
 PERFO0         0.745         1.000 
 GRAD           0.701         0.931         0.931



Descriptives
ESTIMATED SAMPLE STATISTICS 

           Means 
              PERFO5        PERFO0        GRAD 
              ________      ________      ________ 
              50.639        17.977         0.213 

           Covariances 
              PERFO5        PERFO0        GRAD 
              ________      ________      ________ 
 PERFO5       160.847 
 PERFO0        74.362        69.377 
 GRAD           1.781         1.256         0.168 

           Correlations 
              PERFO5        PERFO0        GRAD 
              ________      ________      ________ 
 PERFO5         1.000 
 PERFO0         0.704         1.000 
 GRAD           0.342         0.368         1.000



Unstandardized Estimates

MODEL RESULTS 

                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 

 PERFO5   ON 
    PERFO0             1.018      0.094     10.837      0.000 
    GRAD               2.990      1.779      1.680      0.093 

 Intercepts 
    PERFO5            31.707      1.771     17.905      0.000 

 Residual Variances 
    PERFO5            79.842      9.163      8.713      0.000



Interpretations

Interpret and report ML estimates in the same way 
as a complete-data analysis 

Controlling for graduation status, a one-point 
increase in baseline performance results in a 1.018 
increase in 5th grade performance, on average 

Controlling for baseline performance, children with 
mothers who graduated scored 2.99 points higher at 
5th grade, on average



Standardized Estimates
STANDARDIZED MODEL RESULTS 

STDYX Standardization 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 

 PERFO5   ON 
    PERFO0             0.668      0.047     14.160      0.000 
    GRAD               0.097      0.058      1.676      0.094 

R-SQUARE 

    Observed                                        Two-Tailed 
    Variable        Estimate       S.E.  Est./S.E.    P-Value 

    PERFO5             0.504      0.055      9.190      0.000



Interpretations

Controlling for graduation status, a one standard 
deviation increase in baseline performance results in 
a .668 standard deviation increase in 5th grade 
performance, on average 

Together, the two predictors explain 50.4% of the 
variance in job performance ratings



Advanced Tactics: Auxiliary Variables

Researchers rarely know why data are missing 

An inclusive strategy incorporates a set of auxiliary 
variables into the missing data handling routine  

Good auxiliary variables are either (a) correlates of 
incomplete variables or (b) correlates of missingness 

Auxiliary variables can increase power reduce bias



Auxiliary Variables

MOMED is associated with missingness on PERFO5 
(mothers who did not graduate have kids with higher 
rates of missingness) 

Including MOMED as an auxiliary variable can 
reduce nonresponse bias 

Including PERFO3 can increase power because it is 
strongly correlated with PERFO5 (R = .81)



Spider Model

Graham (2003) outlined a so-called spider model for 
auxiliary variables 

The model transmits information from the auxiliary 
variables via a series of correlations 

The spider model does not alter the substantive 
interpretation of the parameter estimates



Spider Model Rules

Correlate each auxiliary variable with … 

Manifest predictor variables 

Other auxiliary variables 

The residual terms of all outcome variables 

Do not correlation auxiliary variables with latents



Analysis Model And Diagram

The interpretation of 
model parameters is 
unaffected by the 
presence of auxiliary 
variables 

Interpret β1 and β2 in the 
same way as before

β1

β2

momed

perfo3

perfo0

grad

perfo5



Ml Ex 1B - Auxiliary Variables.Inp

DATA: 
file = wisc.dat; 
VARIABLE: 
names = id verb0 verb1 verb3 verb5 perfo0 perfo1 perfo3 perfo5 
 info0 comp0 simi0 voca0 info5 comp5 simi5 voca5 momed grad; 
usevariables = perfo0 grad perfo5; 
missing = all(-99); 
auxiliary = (m) momed perfo3; 
ANALYSIS: 
estimator = ml; 
MODEL: 
perfo0 grad; 
perfo5 on perfo0 grad;   
OUTPUT: 
sampstat standardized(stdyx);



Analysis Summary
SUMMARY OF ANALYSIS 

Number of groups                                                 1 
Number of observations                                         204 

Number of dependent variables                                    1 
Number of independent variables                                  2 
Number of continuous latent variables                            0 

Observed dependent variables 

  Continuous 
   PERFO5 

Observed independent variables 
   PERFO0      GRAD 

Observed auxiliary variables 
   MOMED       PERFO3



Unstandardized Estimates

MODEL RESULTS 

                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 

 PERFO5   ON 
    PERFO0             1.020      0.091     11.163      0.000 
    GRAD               2.790      1.735      1.608      0.108 

 Intercepts 
    PERFO5            31.689      1.735     18.261      0.000 

 Residual Variances 
    PERFO5            79.399      8.986      8.836      0.000



Interpretations

Interpret and report ML estimates in the same way 
as a complete-data analysis 

Controlling for graduation status, a one-point 
increase in baseline performance results in a 1.02 
increase in 5th grade performance, on average 

Controlling for baseline performance, children with 
mothers who graduated scored 2.79 points higher at 
5th grade, on average



Practical Advice

Using a large number of auxiliary variables can lead 
to convergence problems 

Identify a small number of variables with strong 
correlations (R > .40) with the analysis variables 

Using a small number of variables with strong 
correlations is usually better than using a large 
number of variables with weak correlations



Analysis Example 2: 
Repeated Measures



Ml Ex 2A - Repeated Measures.Inp
DATA: 
file = wisc.dat; 
VARIABLE: 
names = id verb0 verb1 verb3 verb5 perfo0 perfo1 perfo3 perfo5 
 info0 comp0 simi0 voca0 info5 comp5 simi5 voca5 momed grad; 
usevariables = perfo0 perfo1 perfo3 perfo5; 
missing = all(-99); 
ANALYSIS: 
estimator = ml; 
MODEL: 
[perfo0-perfo5] (mean0 mean1 mean3 mean5);                  
perfo0-perfo5 with perfo0-perfo5;       
MODEL TEST: 
mean0 = mean1; mean1 = mean3; mean3 = mean5;          
OUTPUT: 
sampstat patterns;



Analysis Summary

INPUT READING TERMINATED NORMALLY 

SUMMARY OF ANALYSIS 

Number of groups                                                 1 
Number of observations                                         204 

Number of dependent variables                                    4 
Number of independent variables                                  0 
Number of continuous latent variables                            0



Covariance Coverage

PROPORTION OF DATA PRESENT 

           Covariance Coverage 
              PERFO0        PERFO1        PERFO3        PERFO5 
              ________      ________      ________      ________ 
 PERFO0         1.000 
 PERFO1         1.000         1.000 
 PERFO3         0.848         0.848         0.848 
 PERFO5         0.745         0.745         0.745         0.745



Missing Data Patterns
SUMMARY OF MISSING DATA PATTERNS 

     MISSING DATA PATTERNS (x = not missing) 

           1  2  3 
 PERFO0    x  x  x 
 PERFO1    x  x  x 
 PERFO3    x  x 
 PERFO5    x 

     MISSING DATA PATTERN FREQUENCIES 

    Pattern   Frequency     Pattern   Frequency     Pattern   Frequency 
          1         152           2          21           3          31



Unstandardized Estimates
MODEL RESULTS 

                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 

 Means 
    PERFO0            17.977      0.583     30.827      0.000 
    PERFO1            27.690      0.698     39.682      0.000 
    PERFO3            39.231      0.741     52.960      0.000 
    PERFO5            50.633      0.927     54.601      0.000 

 Variances 
    PERFO0            69.377      6.869     10.100      0.000 
    PERFO1            99.333      9.835     10.100      0.000 
    PERFO3           105.107     10.873      9.667      0.000 
    PERFO5           157.091     16.699      9.407      0.000



Unstandardized Estimates, Cont.

                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 

 PERFO0   WITH 
    PERFO1            64.777      7.372      8.787      0.000 
    PERFO3            62.302      7.566      8.235      0.000 
    PERFO5            72.233      9.209      7.844      0.000 

 PERFO1   WITH 
    PERFO3            80.439      9.245      8.701      0.000 
    PERFO5            97.959     11.401      8.592      0.000 

 PERFO3   WITH 
    PERFO5           103.742     12.120      8.560      0.000



Model Test ( Wald Statistic )

The MODEL TEST command specifies constraints 
that are consistent with a hypothesis of no change 
(mean0 = mean1, mean1 = mean3, mean3 = mean5) 

df = 3 because the Wald test posits three constraints



Model Test Output

The significant chi-square, χ2(3)= 2487.51, indicates 
that the data are inconsistent with the null 
hypothesis of no change

Wald Test of Parameter Constraints 

          Value                           2487.510 
          Degrees of Freedom                     3 
          P-Value                           0.0000



Advanced Tactics: New Parameters

Mplus provides facilities for computing and testing 
new parameters that are functions of estimated 
parameters 

Pairwise comparisons and effect size estimates 
might be of interest in a repeated measures analysis 

Label parameters and use the labels to define new 
parameters in the MODEL CONSTRAINT command



Model Constraint Command

The MODEL CONSTRAINT command defines a 
pairwise comparison and Cohen’s d effect size

MODEL: 
[perfo0-perfo5] (mean0 mean1 mean3 mean5);        
perfo0-perfo5 (var0 var1 var3 var5);            
perfo0-perfo5 with perfo0-perfo5;       
MODEL TEST: 
mean0 = mean1; mean1 = mean3; mean3 = mean5;  
MODEL CONSTRAINT: 
new(change cohensd); 
change = mean5 - mean0; 
cohensd = change / sqrt(var0);   



Ml Ex 2B - Repeated Measures.Inp
DATA: 
file = wisc.dat; 
VARIABLE: 
names = id verb0 verb1 verb3 verb5 perfo0 perfo1 perfo3 perfo5 
 info0 comp0 simi0 voca0 info5 comp5 simi5 voca5 momed grad; 
usevariables = perfo0 perfo1 perfo3 perfo5; 
missing = all(-99); 
ANALYSIS: 
estimator = ml; 
MODEL: 
[perfo0-perfo5] (mean0 mean1 mean3 mean5);        
perfo0-perfo5 (var0 var1 var3 var5);            
perfo0-perfo5 with perfo0-perfo5;       
MODEL TEST: 
mean0 = mean1; mean1 = mean3; mean3 = mean5;  
MODEL CONSTRAINT: 
new(change cohensd); 
change = mean5 - mean0; 
cohensd = change / sqrt(var0);  



Additional Estimates

The total mean difference between the first and last 
assessment is 32.65, which is equivalent to 3.92 
standard deviation units (large effect size)

                                                       Two-Tailed 
                       Estimate       S.E.  Est./S.E.    P-Value 

New/Additional Parameters 

    CHANGE            32.656      0.701     46.563      0.000 
    COHENSD            3.921      0.212     18.531      0.000



Multiple Imputation



Overview

Multiple imputation creates several (20 or more) 
copies of the data, each with a different set of 
plausible replacement values 

A single collection of imputed data sets can serve as 
input for many different analyses 

This contrasts maximum likelihood, where missing 
data handling and estimation are integrated



Multiple Imputation Steps

Imputation phase 

Create copies of the data with different imputed values 

Analysis phase 

Perform analyses separately on each data set 

Pooling phase 

Combine estimates and standard errors



The Idea Behind Imputation

Specify a distribution for the missing values 

Use a regression model to sample missing values 
from a distribution that conditions on the complete 
data 

Complete variables are predictors and incomplete 
variables are outcomes



Overview Of Imputation Phase

Markov chain Monte Carlo (MCMC) is the mathematical 
machinery for Bayesian estimation and imputation 

A two-step MCMC algorithm repeatedly generates 
imputations (imputation step) and samples new 
regression model parameters (posterior step) 

A unique set of regression parameters generates each 
imputed data set



Mcmc Cycle 1

Start with initial regression model parameters 

Imputation Step: Sample new imputations, 
conditional on the initial regression parameters 

Posterior Step: Sample new regression parameters, 
conditional on the cycle 1 imputations 

End the first MCMC cycle



Mcmc Cycle 2

Start with regression parameters from the first cycle 

Imputation Step: Sample new imputations, 
conditional on the cycle 1 regression parameters 

Posterior Step: Sample new regression parameters, 
conditional on the cycle 2 imputations 

End the second MCMC cycle



20 chronic pain patients 
enrolled in a pain 
management program 

Patients with mild pain are 
more likely to refuse the 
depression measure

Pain Data
Pain 

Severity
Depression

4 ?
6 ?
7 14

7 11

8 ?
9 ?
9 11

10 ?
10 16

11 9

12 9

14 14

14 16

14 21

15 14

16 14

16 18

17 19

18 21

23 18



Initial Regression Parameters

The imputation regression model specifies complete 
pain ratings as a predictor and the incomplete 
depression variable as a normally distributed 
outcome 

The first imputation step requires an intercept, slope, 
and a residual variance (e.g., from deletion) 

β0 = 7.457, β1 = .557, σ2 = 8.938



Cycle 1 Imputation Step ( I-Step )
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Posterior Step ( P-Step )

The next round of imputation requires a different set 
of regression parameters 

Updated values are obtained by estimating the 
regression from the filled-in data and randomly 
perturbing the resulting estimates 

Updating is performed within the Bayes framework



Alternate Regression Lines
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Sampling Regression Coefficients

New βs are drawn from a multivariate normal 
distribution, where OLS estimates from the complete 
data define the mean vector and covariance matrix 

β ∼MVN( β̂, Σ
β
)

β̂ = (XTX )-1XTY Σ
β
=σ

ε

2(XTX )-1



Posterior Distribution Graphic
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The MCMC algorithm uses 
random number generation 
to randomly update the 
parameter values 

β0 = 6.898, β1 = .529, σ2 = 
7.653

β1

β0

Cycle 1 Parameter Values

σ2



Cycle 2 Imputation Step ( I-Step )
Yimp = Y + ε^
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Thinning

Imputed data sets from consecutive MCMC cycles 
are highly correlated (too similar) 

Saving imputed data sets at specified intervals in the 
MCMC chain (after every 200th cycle) eliminates 
unwanted dependencies 

The Bayes literature refers to this as thinning



P-Step 199

P-Step 200

P-Step 3

P-Step 1

Burn-In Iterations

I-Step 1

I-Step 2

I-Step 3

I-Step 199

P-Step 2

I-Step 200

Iterate ...

Burn-in iterations

Save data set 1



P-Step 399

P-Step 400

P-Step 203

P-Step 201

Thinning Iterations

I-Step 201

I-Step 202

I-Step 203

I-Step 399

P-Step 202

I-Step 400

Iterate ...

Thinning iterations

Save data set 2



P-Step 599

P-Step 600

P-Step 403

P-Step 401

Thinning Iterations

I-Step 401

I-Step 402

I-Step 403

I-Step 599

P-Step 402

I-Step 600

Iterate ...

Thinning iterations

Save data set 3



IMPUTED DATA SCATTERPLOTS
Dataset 1

Dataset 2

Dataset 3

Dataset 4

Dataset 5



Imputed Data Sets
Pain Depress

4 16.87

6 15.00

7 14

7 11

8 10.06

9 18.64

9 11

10 18.02

10 16

11 9

12 9

14 14

14 16

14 21

15 14

16 14

16 18

17 19

18 21

23 18

Pain Depress

4 11.34
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8 15.61

9 13.32
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10 11.61

10 16
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16 14
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17 19

18 21

23 18

Pain Depress

4 14.48

6 10.86

7 14

7 11

8 12.16

9 15.28
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10 6.36

10 16

11 9

12 9

14 14

14 16
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16 14

16 18

17 19

18 21

23 18

Pain Depress
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Pain Depress
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Analysis And Pooling PhaseS

Following imputation, analyze each filled-in data set 
to get estimates and standard errors from each 

The pooling phase combines the estimates and 
standard errors into a single set of results 

Rubin (1987) gives the pooling equations



Averaging Parameter Estimates

The multiple imputation point estimate is the 
arithmetic average of the m complete-data estimates 

θi is a parameter estimate from data set i

θ =

θ̂
i

i=1

m

∑

m
^



Analysis Results

Imputation MDepress SDDepress RPain.Depress

1 15.18 3.74 0.40

2 14.23 3.87 0.66

3 14.21 4.00 0.57

4 14.10 4.73 0.50

5 14.66 3.78 0.57

MI Estimate 14.48 4.02 0.54



Pooling Standard Errors

Standard errors consist of two components 

The within-imputation variance estimates complete-
data sampling error 

The between-imputation variance estimates the 
additional noise from missing data



Analysis Results

Imputation MDepress SE SE2

1 15.18 0.836 0.699

2 14.23 0.865 0.748

3 14.21 0.894 0.799

4 14.10 1.057 1.117

5 14.66 0.844 0.713



Within-Imputation Variance

Within-imputation variance is the average sampling 
variance (squared standard error) from the m 
imputed data sets 

VW estimates the sampling error that would have 
resulted had the data been complete

V
W
=

SE
i

i=1

m

∑

m



Missing Data Uncertainty

Imputation MPain MDepress

1 12.00 15.18

2 12.00 14.23

3 12.00 14.21

4 12.00 14.10

5 12.00 14.66

Missing values do not 
affect the pain severity 
estimates 

The depression 
parameters vary because 
the five data sets contain 
different imputations



Between-Imputation Variance

Between-imputation variance quantifies variation in 
the parameter values caused by missing data 

VB applies the usual formula for the sample variance 
to the m parameter estimates

V
B
=

(θ̂
i
− θ)2

i=1

m

∑

m - 1



Standard Error

The standard error combines complete-data and 
missing-data variation 

m-1 VB is the squared standard error of the pooled 
parameter estimate from the VB formula

SE = V
W
+ V

B
+
V
B

m



Example

V
B
=
(15.18 - 14.48)2 + (14.23 - 14.48)2 + ... + (14.66 - 14.48)2

5 - 1
= .199

SE = .815 + .199+ .199 / 5 = 1.027

Complete-data sampling variance

Missing-data variance

Standard error

V
W
=
.699+ .748 + .799+ 1.117 + .713

5
= .815



Significance Tests

Significance tests use the usual t (or z) ratio 

Degrees of freedom are complex and depend on m, 
the amount of missing data, and the correlations 
among the variables

t =
θ −θ0

SE



Selecting Variables For Imputation

The imputation phase must include all variables and 
effects (interactions, non-linear terms, special data 
structures) that will be part of the subsequent 
analyses as well as any auxiliary variables 

Excluding analysis variables will bias parameter 
estimates toward zero 

Special algorithms are needed for multilevel data



How Many Imputations?

Classic references recommend 3 to 5 data sets 

Standard errors decrease as the number of imputed 
data sets increases (to a point) 

Recent research suggests that m = 20 often yields 
power that is comparable to maximum likelihood 
(Graham, Olchowski, & Gilreath, 2007)



Multiple Imputation In Mplus



Mi Ex 1A - Imputation.Inp
DATA: 
file = wisc.dat; 
VARIABLE: 
names = id verb0 verb1 verb3 verb5 perfo0 perfo1 perfo3 perfo5 
 info0 comp0 simi0 voca0 info5 comp5 simi5 voca5 momed grad; 
usevariables = grad perfo0 perfo1 perfo3 perfo5; 
missing = all(-99); 
ANALYSIS: 
type = basic; 
bseed = 90291; 
DATA IMPUTATION: 
impute = grad (c) perfo3 perfo5; 
ndatasets = 50; 
save = wiscimp*.dat; 
thin = 200;  
OUTPUT: 
tech8;



Imputed Data Format

Mplus saves each imputed data set to a separate file 

The file names use the prefix specified in the SAVE 
command (wiscimp*.dat) 

Mplus creates a text file containing the data set 
names, and this file serves as input for the analysis



Listing File

The listing file 
containing the data 
set names appends 
the word “list” to the 
prefix specified in the 
SAVE command 



Variable Order
Mplus lists the variable order for the imputed data 
sets near the bottom of the output file

SAVEDATA INFORMATION 

  Save file 
    wiscimp*.dat 

  Order of variables 

    GRAD 
    PERFO0 
    PERFO1 
    PERFO3 
    PERFO5



Analyzing Imputed Data

Mplus automates the analysis and pooling phases 

Analyzing imputed data sets requires a small 
change to the DATA command, but the remaining 
commands are identical to a complete-data analysis 

Many analyses can draw on the same imputations



Mi Ex 1B - Regression Analysis.Inp

DATA: 
file = wiscimplist.dat;   
type = imputation;             
VARIABLE: 
names = grad perfo0 perfo1 perfo3 perfo5; 
usevariables = grad perfo0 perfo5; 
ANALYSIS: 
estimator = ml; 
MODEL: 
perfo5 on perfo0 grad; 
OUTPUT: 
standardized(stdyx);



Analysis Summary

INPUT READING TERMINATED NORMALLY 

SUMMARY OF ANALYSIS 

Number of groups                                                 1 
Average number of observations                                 204 

Number of replications 
    Requested                                                   50 
    Completed                                                   50 

Number of dependent variables                                    1 
Number of independent variables                                  2 
Number of continuous latent variables                            0



Descriptives

NOTE:  These are average results over 50 data sets. 

     SAMPLE STATISTICS 

           Means 
              PERFO5        GRAD          PERFO0 
              ________      ________      ________ 
               50.554         0.211        17.977 

           Correlations 
              PERFO5        GRAD          PERFO0 
              ________      ________      ________ 
 PERFO5         1.000 
 GRAD           0.353         1.000 
 PERFO0         0.690         0.374         1.000



Unstandardized Estimates

MODEL RESULTS 

                                                Two-Tailed   Rate of 
                Estimate       S.E.  Est./S.E.    P-Value    Missing 

 PERFO5   ON 
    PERFO0             0.976   0.088   11.029      0.000      0.156 
    GRAD               3.380   1.746    1.936      0.053      0.096 

 Intercepts 
    PERFO5            32.296   1.684   19.182      0.000      0.200 

 Residual Variances 
    PERFO5            80.468   9.329    8.626      0.000      0.270



Interpretations

Interpret and report estimates in the same way as a 
complete-data analysis 

Controlling for graduation status, a one-point 
increase in baseline performance results in a .976 
increase in 5th grade performance, on average 

Controlling for baseline performance, children with 
mothers who graduated scored 3.38 points higher at 
5th grade, on average



Standardized Estimates
STANDARDIZED MODEL RESULTS 

STDYX Standardization 
                                                Two-Tailed   Rate of 
                Estimate      S.E.   Est./S.E.    P-Value    Missing 

 PERFO5   ON 
    PERFO0        0.649      0.047     13.759      0.000      0.152 
    GRAD          0.110      0.057      1.942      0.052      0.093 

R-SQUARE 

    Observed                                    Two-Tailed   Rate of 
    Variable    Estimate       S.E.  Est./S.E.    P-Value    Missing 

    PERFO5        0.487      0.054      8.999      0.000      0.146



Interpretations

Controlling for graduation status, a one standard 
deviation increase in baseline performance results in 
a .649 standard deviation increase in 5th grade 
performance, on average 

Together, the two predictors explain 48.7% of the 
variance in job performance ratings



Comparison Of Estimates

                 Estimate        

PERFO5  ON 
    PERFO0             0.976      
    GRAD               3.380      

Intercepts 
    PERFO5            32.296      

 Residual Variances 
    PERFO5            80.468  

                    Estimate      

 PERFO5  ON 
    PERFO0             1.018      
    GRAD               2.990      

Intercepts 
    PERFO5            31.707      

 Residual Variances 
    PERFO5            79.842  

Maximum Likelihood Multiple Imputation



Practical Conclusions

Maximum likelihood and multiple imputation 
produced nearly identical results 

This is typically the case, as the procedures are 
equivalent in large samples  

Practical considerations and personal preference 
often dictate the choice of method



Analysis Example 2: 
Repeated Measures



Mi Ex 2 - Repeated Measures.Inp

DATA: 
file = wiscimplist.dat;   
type = imputation;             
VARIABLE: 
names = grad perfo0 perfo1 perfo3 perfo5; 
usevariables = perfo0 perfo1 perfo3 perfo5; 
missing = all(-99); 
ANALYSIS: 
estimator = ml; 
MODEL: 
[perfo0-perfo5] (mean0 mean1 mean3 mean5);                  
perfo0-perfo5 with perfo0-perfo5;       
MODEL TEST: 
mean0 = mean1; mean1 = mean3; mean3 = mean5;         



Unstandardized Estimates

MODEL RESULTS 

                                                Two-Tailed   Rate of 
                Estimate       S.E.  Est./S.E.    P-Value    Missing 

 Means 
    PERFO0       17.977      0.583     30.827      0.000      0.000 
    PERFO1       27.690      0.698     39.682      0.000      0.000 
    PERFO3       39.303      0.739     53.194      0.000      0.062 
    PERFO5       50.502      0.932     54.193      0.000      0.122 
 Variances 
    PERFO0       69.377      6.869     10.100      0.000      0.000 
    PERFO1       99.333      9.835     10.100      0.000      0.000 
    PERFO3      104.535     10.772      9.704      0.000      0.076 
    PERFO5      155.723     16.276      9.568      0.000      0.102



Model Test ( Wald Statistic )

The MODEL TEST command specifies constraints 
that are consistent with a hypothesis of no change 
(mean0 = mean1, mean1 = mean3, mean3 = mean5) 

df = 3 because the Wald test posits three constraints



Model Test Output

The significant chi-square, χ2(3)= 3101.989, indicates 
that the data are inconsistent with the null 
hypothesis of no change

Wald Test of Parameter Constraints 

          Value                           3101.989 
          Degrees of Freedom                     3 
          P-Value                           0.0000



ADDITIONAL RESOURCES

www.appliedmissingdata.com 

Data sets and Mplus program 
files from the book 

Many additional data sets 
and Mplus scripts



Questions?



Thank You!


