Spatial Working Memory: The Effects of Attention and Distractors for Children born Preterm and Fullterm

> Anne R. Schutte Department of Psychology, UNL

Outline

Development of spatial working memory (SWM) in Early Childhood Dynamic Field Theory Spatial attention and spatial memory - Adults - Children Predictions of model Current study - Experiments 1 and 2

Development of SWM in Early Childhood

A developmental shift in "geometric" biases (Huttenlocher et al., 1994)

Spatial Memory Video Game

Dynamic Field Theory (DFT)

- Dynamic systems theory of Spatial Working Memory (SWM)
- Neural network model (e.g., Schutte, Spencer & Schöner, 2003; Schutte & Spencer, 2009; Schutte & Spencer, in press)

Dynamic Field Theory

Reference input (midline)

Dynamic Field Theory

Spatial Precision Hypothesis

Geometric biases over development

Schutte & Spencer, in press

Schutte & Spencer, in press

Spatial Attention and Spatial Working Memory (SWM)

Spatial attention influences maintenance in SWM in adults (e.g., Awh and Jonides)

 Proposed selective spatial attention is a "rehearsal mechanism" for SWM

 When spatial attention is manipulated during the delay adults show larger errors
 Adults are biased toward attention location (Johnson et al., 2008) Spatial Attention and Spatial Working Memory (SWM)

Preschoolers: no correlation between attention performance and SWM performance (Vicari et al., 2004)

Purpose of the Study

 To examine how spatial attention influences SWM in children from 3 to 6 years of age.
 Examine in model and children
 Model: no mechanism for differentiating target and distractors

 Added color-space field (Johnson & Spencer, 2010)

DFT: Color-Space Field

Dynamic Field Theory

-20° target		
No distractor	0º distractor (on midline)	
-2.41 (toward midline)		
.14 (away from		
	No distractor -2.41 (toward midline) .14	

-	-20° target		
	No distractor	0º distractor (on midline)	
3-year-old model	-2.41 (toward midline)	-11.6	
6-year-old model	.14 (away from midline)	1.16	

Predictions of Model

Young children will be biased toward distractor when it is near the target

 due to excitatory input

 Older children will be biased away from the distractor when it is near the target

 due to inhibitory input

Experiment 1 Methods

Participants

- 15 3-year-olds
- 13 4-year-olds
- 15 5-year-olds
- 15 6-year-olds

Method

SWM tasks

Spaceship search
Treasure find
Bubble burst

Delay: no delay, 1 s, 4 s, or a 9 s

Method

 Targets: -20 degrees from midline or 40 degrees from midline
 Distractor appeared on half of the 4 and 9 s delay trials

- -20° toward midline (inner)
- -40° away from midline (outer)

Discussion

3-year-olds were biased toward distractor

 Supported prediction

 Other ages not influenced by distractor

 4 years: transitional age
 5 and 6 years biased away from midline, also biased away from closest distractor

 Experiment 2

 Changed distractor locations

Experiment 2 Method

Participants

- 10 3-year-olds
- 12 4-year-olds
- 12 5-year-olds
- 11 6-year-olds

Target and distractors:

^a9 s delay data

Discussion

Experiment 1 results support the predicted bias toward distractors in 3-year-olds
 Experiment 2 results support the predicted bias away from distractors in 6-year-olds
 Children at or near transition not significantly influenced by distractors

Discussion

Spatial attention influenced maintenance in spatial working memory in early childhood

- Shifted bias
- How distractors influenced bias changed over development
- Supported predictions of the DFT
- Future directions:
 - Examine SWM performance in children with attention deficits
 - ADHD
 - Preterm children

Thanks:

- Parents and children
- Dr. Kimberly Andrews Espy
- Dr. Sandra Wiebe
- Members of the Spatial Memory Lab:
 - Brian Keiser
 - Heidi Fleharty
 - Margaret Ortmann
 - Chelsie Guerrraro
 - Marisa Sevick
 - And all of the undergraduates in the lab
- Research supported by R03 HD053359 and UNL Laymans grant

Results

4-year-olds

-	-20° target		
	No distractor	-40° distractor	
3-year-old model	-5.56	8.60	
6-year-old model	4.89	.73	

Results

A-not-B-type errors

Dynamic Field Theory

Dynamic Field Theory Young child: biased toward distracter

Dynamic Field Theory Older child: biased away from attractor

